An Expensive Multi-objective Optimization Algorithm Based on Regional Density Ratio

被引:0
|
作者
Jiang, Zijian [1 ]
Sun, Chaoli [1 ]
Liu, Xiaotong [2 ]
Li, Jing [2 ]
Wang, Kexin [3 ]
机构
[1] Taiyuan Univ Sci & Technol, Sch Comp Sci & Technol, Taiyuan 030024, Peoples R China
[2] Taiyuan Univ Sci & Technol, Sch Elect Informat Engn, Taiyuan 030024, Peoples R China
[3] 2nd Engn Co Ltd, China Railway 12th Bur Grp, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金;
关键词
Expensive Optimization Problems; Surrogate-assisted Evolutionary Algorithms; Semi-supervised Learning; APPROXIMATION;
D O I
10.1007/978-981-97-7181-3_33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Training surrogate models with high quality often requires a sufficient quantity of labelled data with a balanced distribution. However, obtaining enough labelled solutions for expensive optimization problems is challenging, let alone achieving a uniformly distributed training dataset. In this paper, we propose an expensive multi-objective evolutionary algorithm based on regional density ratio (MOEA-RDR) for solving computationally expensive problems. In MOEA-RDR, a new evaluation metric, integrating the uncertainty measures of Gaussian process models with the underlying assumptions of semi-supervised techniques, is introduced to select unlabelled solutions to participate in the training of surrogate models. A number of experiments are conducted on WFG test problems, and the experimental results show that our proposed method is more efficient than four state-of-the-art algorithms for solving computationally expensive multi-objective problems.
引用
收藏
页码:418 / 429
页数:12
相关论文
共 50 条
  • [21] Multi-objective particle swarm optimization algorithm based on crowding-density
    1600, Centre for Environment Social and Economic Research, Post Box No. 113, Roorkee, 247667, India (50):
  • [22] Multi-objective optimization of expensive electromagnetic simulation models
    Koziel, Slawomir
    Bekasiewicz, Adrian
    APPLIED SOFT COMPUTING, 2016, 47 : 332 - 342
  • [23] A clustering-based surrogate-assisted evolutionary algorithm (CSMOEA) for expensive multi-objective optimization
    Wenxin Wang
    Huachao Dong
    Peng Wang
    Xinjing Wang
    Jiangtao Shen
    Soft Computing, 2023, 27 : 10665 - 10686
  • [24] A multi-objective differential evolutionary algorithm for constrained multi-objective optimization problems with low feasible ratio
    Yang, Yongkuan
    Liu, Jianchang
    Tan, Shubin
    Wang, Honghai
    APPLIED SOFT COMPUTING, 2019, 80 : 42 - 56
  • [25] A clustering-based surrogate-assisted evolutionary algorithm (CSMOEA) for expensive multi-objective optimization
    Wang, Wenxin
    Dong, Huachao
    Wang, Peng
    Wang, Xinjing
    Shen, Jiangtao
    SOFT COMPUTING, 2023, 27 (15) : 10665 - 10686
  • [26] Pareto Set Learning for Expensive Multi-Objective Optimization
    Lin, Xi
    Yang, Zhiyuan
    Zhang, Xiaoyuan
    Zhang, Qingfu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [27] Dynamic multi-objective optimization algorithm based on multi-regional center point prediction
    Ma X.-M.
    Yang J.-M.
    Sun H.
    Hu Z.-Y.
    Wei Q.-N.
    Kongzhi yu Juece/Control and Decision, 2022, 37 (10): : 2477 - 2486
  • [28] A surrogate-assisted expensive constrained multi-objective global optimization algorithm and application
    Wang, Wenxin
    Dong, Huachao
    Wang, Xinjing
    Wang, Peng
    Shen, Jiangtao
    Liu, Guanghui
    APPLIED SOFT COMPUTING, 2024, 167
  • [29] A PSO-Based Hybrid Multi-Objective Algorithm for Multi-Objective Optimization Problems
    Wang, Xianpeng
    Tang, Lixin
    ADVANCES IN SWARM INTELLIGENCE, PT II, 2011, 6729 : 26 - 33
  • [30] A Species-Based Multi-Objective Genetic Algorithm for Multi-Objective Optimization Problems
    Sun Fuquan
    Wang Hongfeng
    Lu Fuqiang
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 5063 - 5066