Securing IoT Environment by Deploying Federated Deep Learning Models

被引:0
|
作者
Alghamdi, Saleh [1 ]
Albeshri, Aiiad [1 ]
机构
[1] King Abdulaziz Univ, Fac Comp Sci, Jeddah, Saudi Arabia
关键词
Internet of Things (IoT); security breaches; machine learning; Deep Learning (DL); INTERNET;
D O I
10.14569/IJACSA.2024.0150413
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The vast network of interconnected devices, known as the Internet of Things (IoT), produces significant volumes of data and is vulnerable to security threats. The proliferation of IoT protocols has resulted in numerous zero-day attacks, which traditional machine learning systems struggle to detect due to IoT networks' complexity and the sheer volume of these attacks. This situation highlights the urgent need for developing more advanced and effective attack detection methods to address the growing security challenges in IoT environments. In this research, we propose an attack detection mechanism based on deep learning for federated learning in IoT. Specifically, we aim to detect and prevent malicious attacks in the form of model poisoning and Byzantine attacks that can compromise the accuracy and integrity of the trained model. The objective is to compare the performance of a distributed attack detection system using a DL model against a centralized detection system that uses shallow machine learning models. The proposed approach uses a distributed attack detection system that consists of multiple nodes, each with its own DL model for detecting attacks. The DL model is trained using a large dataset of network traffic to learn high-level features that can distinguish between normal and malicious traffic. The distributed system allows for efficient and scalable detection of attacks in a federated learning network within the IoT. The experiments show that the distributed attack detection system using DL outperforms centralized detection systems that use shallow machine learning models. The proposed approach has the potential to improve the security of the IoT by detecting attacks more effectively than traditional machine learning systems. However, there are limitations to the approach, such as the need for a large dataset for training the DL model and the computational resources required for the distributed system.
引用
收藏
页码:122 / 129
页数:8
相关论文
共 50 条
  • [41] Node Selection Algorithm for Federated Learning Based on Deep Reinforcement Learning for Edge Computing in IoT
    Yan, Shuai
    Zhang, Peiying
    Huang, Siyu
    Wang, Jian
    Sun, Hao
    Zhang, Yi
    Tolba, Amr
    ELECTRONICS, 2023, 12 (11)
  • [42] Multiagent DDPG-Based Deep Learning for Smart Ocean Federated Learning IoT Networks
    Kwon, Dohyun
    Jeon, Joohyung
    Park, Soohyun
    Kim, Joongheon
    Cho, Sungrae
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (10): : 9895 - 9903
  • [43] Deep Learning Models for Cyber Security in IoT Networks
    Roopak, Monika
    Tian, Gui Yun
    Chambers, Jonathon
    2019 IEEE 9TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2019, : 452 - 457
  • [44] An Effective Intrusion Detection System for Securing IoT Using Feature Selection and Deep Learning
    Parimala, G.
    Kayalvizhi, R.
    2021 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI), 2021,
  • [45] Securing the IoT System of Smart City against Cyber Threats Using Deep Learning
    Saba, Tanzila
    Khan, Amjad Rehman
    Sadad, Tariq
    Hong, Seng-phil
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2022, 2022
  • [46] End-to-End Data Authentication Deep Learning Model for Securing IoT Configurations
    Hammad, Mohamed
    Iliyasu, Abdullah M.
    Elgendy, Ibrahim A.
    Abd El-Latif, Ahmed A.
    HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES, 2022, 12
  • [47] Federated Learning with Heterogeneous Models for On-device Malware Detection in IoT Networks
    Shukla, Sanket
    Rafatirad, Setareh
    Homayoun, Houman
    Dinakarrao, Sai Manoj Pudukottai
    2023 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION, DATE, 2023,
  • [48] Role of machine learning and deep learning in securing 5G-driven industrial IoT applications
    Sharma, Parjanay
    Jain, Siddhant
    Gupta, Shashank
    Chamola, Vinay
    AD HOC NETWORKS, 2021, 123
  • [49] Securing fog-assisted IoT smart homes: a federated learning-based intrusion detection approach
    Bensaid, Radjaa
    Labraoui, Nabila
    Saidi, Hafida
    Salameh, Haythem Bany
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (01):
  • [50] Federated Learning for IoT Intrusion Detection
    Lazzarini, Riccardo
    Tianfield, Huaglory
    Charissis, Vassilis
    AI, 2023, 4 (03) : 509 - 530