Assessment of the errors of high-fidelity two-qubit gates in silicon quantum dots

被引:5
|
作者
Tanttu, Tuomo [1 ,2 ]
Lim, Wee Han [1 ,2 ]
Huang, Jonathan Y. [1 ]
Stuyck, Nard Dumoulin [1 ,2 ]
Gilbert, Will [1 ,2 ]
Su, Rocky Y. [1 ]
Feng, Mengke [1 ,2 ]
Cifuentes, Jesus D. [1 ,2 ]
Seedhouse, Amanda E. [1 ,2 ]
Seritan, Stefan K. [3 ]
Ostrove, Corey I. [4 ]
Rudinger, Kenneth M. [4 ]
Leon, Ross C. C. [1 ,10 ]
Huang, Wister [1 ,11 ]
Escott, Christopher C. [1 ,2 ]
Itoh, Kohei M. [5 ]
Abrosimov, Nikolay V. [6 ]
Pohl, Hans-Joachim [7 ]
Thewalt, Michael L. W. [8 ]
Hudson, Fay E. [1 ,2 ]
Blume-Kohout, Robin [4 ]
Bartlett, Stephen D. [9 ]
Morello, Andrea [1 ]
Laucht, Arne [1 ,2 ]
Yang, Chih Hwan [1 ,2 ]
Saraiva, Andre [1 ,2 ]
Dzurak, Andrew S. [1 ,2 ]
机构
[1] UNSW, Sch Elect Engn & Telecommun, Sydney, NSW, Australia
[2] Diraq, Sydney, NSW, Australia
[3] Sandia Natl Labs, Quantum Performance Lab, Livermore, CA USA
[4] Sandia Natl Labs, Quantum Performance Lab, Albuquerque, NM USA
[5] Keio Univ, Sch Fundamental Sci & Technol, Yokohama 2238522, Japan
[6] Leibniz Inst Kristallzuchtung, Berlin, Germany
[7] VITCON Projectconsult GmbH, Jena, Germany
[8] Simon Fraser Univ, Dept Phys, Vancouver, BC, Canada
[9] Univ Sydney, Ctr Engn Quantum Syst, Sch Phys, Sydney, NSW, Australia
[10] Quantum Mot Technol Ltd, London, England
[11] Swiss Fed Inst Technol, Zurich, Switzerland
基金
澳大利亚研究理事会;
关键词
COMPUTATIONAL ADVANTAGE; PROCESSOR; QUBIT; LOGIC;
D O I
10.1038/s41567-024-02614-w
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Achieving high-fidelity entangling operations between qubits consistently is essential for the performance of multi-qubit systems. Solid-state platforms are particularly exposed to errors arising from materials-induced variability between qubits, which leads to performance inconsistencies. Here we study the errors in a spin qubit processor, tying them to their physical origins. We use this knowledge to demonstrate consistent and repeatable operation with above 99% fidelity of two-qubit gates in the technologically important silicon metal-oxide-semiconductor quantum dot platform. Analysis of the physical errors and fidelities in multiple devices over extended periods allows us to ensure that we capture the variation and the most common error types. Physical error sources include the slow nuclear and electrical noise on single qubits and contextual noise that depends on the applied control sequence. Furthermore, we investigate the impact of qubit design, feedback systems and robust gate design to inform the design of future scalable, high-fidelity control strategies. Our results highlight both the capabilities and challenges for the scaling-up of silicon spin-based qubits into full-scale quantum processors. For solid-state qubits, the material environment hosts sources of errors that vary in time and space. This systematic analysis of errors affecting high-fidelity two-qubit gates in silicon can inform the design of large-scale quantum computers.
引用
收藏
页码:1804 / 1809
页数:16
相关论文
共 50 条
  • [41] High-fidelity quantum gates in the presence of dispersion
    Khani, B.
    Merkel, S. T.
    Motzoi, F.
    Gambetta, Jay M.
    Wilhelm, F. K.
    PHYSICAL REVIEW A, 2012, 85 (02):
  • [42] Fast high-fidelity single-qubit gates for flip-flop qubits in silicon
    Calderon-Vargas, F. A.
    Barnes, Edwin
    Economou, Sophia E.
    PHYSICAL REVIEW B, 2022, 106 (16)
  • [43] Two-Qubit Quantum Gates to Reduce the Quantum Cost of Reversible Circuit
    Rahman, Md. Mazder
    Banerjee, Anindita
    Dueck, Gerhard W.
    Pathak, Anirban
    2011 41ST IEEE INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL), 2011, : 86 - 92
  • [44] The experimental realization of high-fidelity 'shortcut-to-adiabaticity' quantum gates in a superconducting Xmon qubit
    Wang, Tenghui
    Zhang, Zhenxing
    Xiang, Liang
    Jia, Zhilong
    Duan, Peng
    Cai, Weizhou
    Gong, Zhihao
    Zong, Zhiwen
    Wu, Mengmeng
    Wu, Jianlan
    Sun, Luyan
    Yin, Yi
    Guo, Guoping
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [45] A programmable two-qubit quantum processor in silicon
    T. F. Watson
    S. G. J. Philips
    E. Kawakami
    D. R. Ward
    P. Scarlino
    M. Veldhorst
    D. E. Savage
    M. G. Lagally
    Mark Friesen
    S. N. Coppersmith
    M. A. Eriksson
    L. M. K. Vandersypen
    Nature, 2018, 555 : 633 - 637
  • [46] Performance Assessment of Resonantly Driven Silicon Two-Qubit Quantum Gate
    Wu, Tong
    Guo, Jing
    IEEE ELECTRON DEVICE LETTERS, 2018, 39 (07) : 1096 - 1099
  • [47] A programmable two-qubit quantum processor in silicon
    Watson, T. F.
    Philips, S. G. J.
    Kawakami, E.
    Ward, D. R.
    Scarlino, P.
    Veldhorst, M.
    Savage, D. E.
    Lagally, M. G.
    Friesen, Mark
    Coppersmith, S. N.
    Eriksson, M. A.
    Vandersypen, L. M. K.
    NATURE, 2018, 555 (7698) : 633 - +
  • [48] Fast high-fidelity entangling gates for spin qubits in Si double quantum dots
    Calderon-Vargas, F. A.
    Barron, George S.
    Deng, Xiu-Hao
    Sigillito, A. J.
    Barnes, Edwin
    Economou, Sophia E.
    PHYSICAL REVIEW B, 2019, 100 (03)
  • [49] Quantum computing on lattices using global two-qubit gates
    Ivanyos, G
    Massar, S
    Nagy, AB
    PHYSICAL REVIEW A, 2005, 72 (02):
  • [50] Optimal Two-Qubit Quantum Control in InAs Quantum Dots
    Gamouras, Angela
    Mathew, Reuble
    Freisem, Sabine
    Deppe, Dennis
    Hall, Kimberley C.
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2013,