Short-term air pollution prediction using graph convolutional neural networks

被引:1
|
作者
Jana, Swadesh [1 ]
Middya, Asif Iqbal [1 ]
Roy, Sarbani [1 ]
机构
[1] Jadavpur Univ, Dept Comp Sci & Engn, Kolkata, India
关键词
Air pollution; Pollution forecasting; Deep learning; Spatio-temporal graph; Convolution networks; PARTICULATE MATTER; QUALITY; MODEL; URBAN; SYSTEM; HEALTH; AREA;
D O I
10.1016/j.techfore.2024.123684
中图分类号
F [经济];
学科分类号
02 ;
摘要
Pollution is a major concern in the present day, causing multiple illnesses and deaths, specifically in developing countries in Asia and Africa. While it has drawn worldwide attention as governments try to issue laws to meet certain criteria for air pollution levels, pollution concentration forecasting has become a major challenge. Particularly, short term forecasting will help to gain information regarding concentrations of harmful pollutants for the upcoming hours and enable better decision-making with regards to controlling air pollution. In this paper, we investigate spatio-temporal graph-based models to determine the best methods for spatial and temporal analysis of data. The models have the additional capacity to perform multi-variate predictions of correlated data, i.e., predicting multiple pollutant concentrations simultaneously, thus requiring lower computational efforts. A real-world pollution dataset measured over Delhi, India, is used to comparing the proposed models with baselines, which shows the Spatio-Temporal Graph Convolution Neural Network (STGCN) models to be performing better than others. For a better understanding of model architectures with the most effective strategies for spatial and temporal data analysis, three models, namely STGCN-A, STGCNB, STGCN-C have been developed. The models have been compared with 6 other baselines over multiple forecasting horizons of 1 h, 24 h, and 48 h timesteps using various metrics such as mean absolute error (MAE), root mean square error (RMSE), mean absolute percent error (MAPE). On the PM 2.5 dataset of Delhi, STGCN-B achieves a performance of 10.53 MAE, 6.92 RMSE and 25.25 MAPE for a 1 h forecast, while STGCN-C achieves 20.18 MAE, 14.73 RMSE and 55.45 MAPE for a 24 h forecast. In general, both structures achieve similar results, with STGCN-C being better in many cases. They are further analysed through observation-prediction graphs and Taylor diagrams, which give an insight into our findings. The models are additionally validated on a benchmark real-world dataset from California, USA for better understanding of the spatio-temporal relations and model performances on a more stable dataset, where STGCN-C performs best for PM 2.5 with 4.30 RMSE, 1.98 MAE, 25.96 MAPE for 1 h predictions for univariate data and 3.63 RMSE, 1.88 MAE and 25.91 MAPE in multivariate forecasting. The developed spatio-temporal graph-based models hold promising applications in urban air quality management, aiding policymakers in implementing targeted interventions to mitigate pollution-related health risks. Furthermore, these models can support public health agencies by providing timely and accurate forecasts of pollutant concentrations, enabling proactive measures to safeguard community well-being. Our study showcases the efficacy of spatio-temporal graph-based models in accurately forecasting air pollutant concentrations, with particular emphasis on short-term predictions. By leveraging multi-variate capabilities, our proposed models demonstrate superior performance compared to baseline approaches across various forecasting horizons.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Short-term power prediction for renewable energy using hybrid graph convolutional network and long short-term memory approach
    Liao, Wenlong
    Bak-Jensen, Birgitte
    Pillai, Jayakrishnan Radhakrishna
    Yang, Zhe
    Liu, Kuangpu
    arXiv, 2021,
  • [32] Using sky-classification to improve the short-term prediction of irradiance with sky images and convolutional neural networks
    Lopez, Victor Arturo Martinez
    van Urk, Gijs
    Doodkorte, Pim J. F.
    Zeman, Miro
    Isabella, Olindo
    Ziar, Hesan
    SOLAR ENERGY, 2024, 269
  • [33] Streamflow prediction using an integrated methodology based on convolutional neural network and long short-term memory networks
    Sujan Ghimire
    Zaher Mundher Yaseen
    Aitazaz A. Farooque
    Ravinesh C. Deo
    Ji Zhang
    Xiaohui Tao
    Scientific Reports, 11
  • [34] Streamflow prediction using an integrated methodology based on convolutional neural network and long short-term memory networks
    Ghimire, Sujan
    Yaseen, Zaher Mundher
    Farooque, Aitazaz A.
    Deo, Ravinesh C.
    Zhang, Ji
    Tao, Xiaohui
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [35] Integrating Spatio-Temporal Graph Convolutional Networks with Convolutional Neural Networks for Predicting Short-Term Traffic Speed in Urban Road Networks
    Jeon, Seung Bae
    Jeong, Myeong-Hun
    APPLIED SCIENCES-BASEL, 2024, 14 (14):
  • [36] Short-Term Bus Passenger Flow Prediction Based on Graph Diffusion Convolutional Recurrent Neural Network
    Zhai, Xubin
    Shen, Yu
    APPLIED SCIENCES-BASEL, 2023, 13 (08):
  • [37] Long Short-term Dynamic Graph Neural Networks: for short-term intense rainfall forecasting
    Xie, Huosheng
    Wang, WeiJie
    2022 5TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND NATURAL LANGUAGE PROCESSING, MLNLP 2022, 2022, : 74 - 80
  • [38] Prediction of Short-Term Breast Cancer Risk Based on Deep Convolutional Neural Networks in Mammography
    Li, Yane
    Fan, Ming
    Liu, Shichen
    Zheng, Bin
    Li, Lihua
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2019, 9 (08) : 1663 - 1672
  • [39] A groundwater level spatiotemporal prediction model based on graph convolutional networks with a long short-term memory
    Wang, Lifang
    Jiang, Zhengwen
    Song, Lei
    Yu, Xi
    Yuan, Shujun
    Zhang, Baoyi
    JOURNAL OF HYDROINFORMATICS, 2024, 26 (11) : 2962 - 2979
  • [40] Air quality prediction using stacked bi- long short-term memory and convolutional neural network in India
    Karkuzhali, S.
    Puyalnithi, Thendral
    Nirmalan, R.
    ARCHIVES OF ENVIRONMENTAL PROTECTION, 2024, 50 (04) : 9 - 21