Experimental investigation of high-velocity impact response and compression after impact behavior of continuous carbon fiber thermoplastic composites

被引:2
|
作者
Wei, Gang [1 ]
Hao, Chenyu [1 ]
Jin, Hongwei [1 ]
Deng, Yunfei [1 ]
机构
[1] Civil Aviat Univ China, Coll Aeronaut Engn, Tianjin 300300, Peoples R China
关键词
Continuous carbon fiber reinforced; thermoplastic composites; High-velocity impact; Compression after impact; Failure mechanism; Energy absorption; DAMAGE; MECHANISMS; STRENGTH; PLATES;
D O I
10.1016/j.tws.2024.112578
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In order to meet the urgent needs for the application of thermoplastic composite structures in aircraft manufacturing and other fields, the impact resistance and damage tolerance of continuous carbon fiber reinforced thermoplastic composite laminates (CCFRTP) are investigated by high-velocity impact (HVI) and compression after impact (CAI) experiments in this paper. The impact experiment results show that the ballistic response of laminates under small-angle conventional impact is similar, and the impact resistance of laminates under large-angle oblique impact is significantly improved. The failure mechanism of laminates under highvelocity impact is revealed by analyzing the impact process of the projectile, the energy absorption level, the failure morphology and internal damage degree of laminates comprehensively. It is clear that the impact angle and velocity of the projectile will significantly affect the coupling form of the failure mechanism and lead to differentiated results. The results of in-plane compression experiment of laminates with impact damage show that the bearing capacity of laminates is significantly weakened by high velocity impact damage, and the residual strength of laminates is directly determined by the mode and degree of impact damage. In particular, through the analysis of the energy absorption mechanism, a trend prediction model of ballistic limit value with impact angle is established, and the influence of high-velocity impact damage on the residual strength of laminates is revealed. This study provides a better understanding of the mechanical response of thermoplastic composite structures to high-velocity impact loads.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Impact response and post-impact compression behavior of two-dimensional triaxially braided carbon fiber composites
    Sun, Yang
    Huang, Jian
    Zhao, Zhenqiang
    Zhou, Haili
    Li, Chao
    Zhang, Liquan
    Zhang, Chao
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2025, 53 (01): : 211 - 218
  • [42] Effect of projectile nose on high-velocity impact behavior of fiber metal laminates
    Majzoobi, Gholamhossein
    Kashfi, Mohammad
    Keshavarzan, Mohsen
    Riazalhosseini, Mohammadreza
    POLYMER COMPOSITES, 2022, 43 (02) : 1177 - 1185
  • [43] High-velocity impact resistance of the carbon fiber composite grid sandwich structures
    Wei, Shiyi
    Guo, Zhangxin
    Niu, Weijing
    Chai, Gin Boay
    Tai, Zhe
    Li, Yongcun
    POLYMER COMPOSITES, 2024, 45 (06) : 5558 - 5573
  • [44] An experimental study on low velocity impact behavior of thermoplastic composites repaired by composite patches
    Zorer, Erdem
    Ozdemir, Okan
    Oztoprak, Nahit
    JOURNAL OF COMPOSITE MATERIALS, 2020, 54 (28) : 4515 - 4524
  • [45] An experimental and numerical investigation on low-velocity impact damage and compression-after-impact behavior of composite laminates
    Tuo, Hongliang
    Lu, Zhixian
    Ma, Xiaoping
    Zhang, Chao
    Chen, Shuwen
    COMPOSITES PART B-ENGINEERING, 2019, 167 : 329 - 341
  • [47] Stochastic optimization and modeling of high-velocity impact tests on high-temperature carbon–carbon composites
    Latif Tibet Aktaş
    Levent Aydın
    SN Applied Sciences, 2021, 3
  • [48] An experimental investigation on low-velocity impact response and compression after impact of a stochastic, discontinuous prepreg tape composite
    Kravchenko, Sergii G.
    Volle, Chris
    Kravchenko, Oleksandr G.
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2021, 149
  • [49] Experimental investigation on characteristics of layered ice spheres under high-velocity impact
    Tan X.
    Feng X.
    Hu Y.
    Xie R.
    Yang S.
    Bai Y.
    Baozha Yu Chongji/Explosion and Shock Waves, 2020, 40 (11):
  • [50] Low-velocity impact damage and compression after impact behavior of CF/PEEK thermoplastic composite laminates
    Liu, Ankang
    Chen, Yunlong
    Hu, Jiqiang
    Wang, Bing
    Ma, Li
    POLYMER COMPOSITES, 2022, 43 (11) : 8136 - 8151