Semenov Arithmetic, Affine VASS, and String Constraints

被引:1
|
作者
Draghici, Andrei [1 ]
Haase, Christoph [1 ]
Manea, Florin [2 ,3 ]
机构
[1] Univ Oxford, Dept Comp Sci, Oxford, England
[2] Gottingen Univ, Dept Comp Sci, Gottingen, Germany
[3] Gottingen Univ, Campus Inst Data Sci, Gottingen, Germany
来源
41ST INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, STACS 2024 | 2024年 / 289卷
基金
欧洲研究理事会;
关键词
arithmetic theories; Buchi arithmetic; exponentiation; vector addition systems with states; string constraints; SMT SOLVER;
D O I
10.4230/LIPIcs.STACS.2024.29
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study extensions of Semenov arithmetic, the first-order theory of the structure < N,+, 2(x)>. It is well-known that this theory becomes undecidable when extended with regular predicates over tuples of number strings, such as the Buchi V-2-predicate. We therefore restrict ourselves to the existential theory of Semenov arithmetic and show that this theory is decidable in EXPSPACE when extended with arbitrary regular predicates over tuples of number strings. Our approach relies on a reduction to the language emptiness problem for a restricted class of affine vector addition systems with states, which we show decidable in EXPSPACE. As an application of our result, we settle an open problem from the literature and show decidability of a class of string constraints involving length constraints.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Simple linear string constraints
    Fu, Xiang
    Powell, Michael C.
    Bantegui, Michael
    Li, Chung-Chih
    FORMAL ASPECTS OF COMPUTING, 2013, 25 (06) : 847 - 891
  • [42] A Mixed Interval Arithmetic/Affine Arithmetic Approach for Robust Design Optimization With Interval Uncertainty
    Wang, Shaobo
    Qing, Xiangyun
    JOURNAL OF MECHANICAL DESIGN, 2016, 138 (04)
  • [43] HAMPI: A Solver for String Constraints
    Kiezun, Adam
    Ganesh, Vijay
    Guo, Philip J.
    Hooimeijer, Pieter
    Ernst, Michael D.
    ISSTA 2009: INTERNATIONAL SYMPOSIUM ON SOFTWARE TESTING AND ANALYSIS, 2009, : 105 - 115
  • [44] On the Expressive Power of String Constraints
    Day, Joel D.
    Ganesh, Vijay
    Grewal, Nathan
    Manea, Florin
    PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2023, 7 (POPL):
  • [45] Constraints on string networks with junctions
    Copeland, E. J.
    Kibble, T. W. B.
    Steer, D. A.
    PHYSICAL REVIEW D, 2007, 75 (06):
  • [46] Phase stability analysis using a modified affine arithmetic
    Staudt, P. B.
    Cardozo, N. S. M.
    Soares, R. de P.
    COMPUTERS & CHEMICAL ENGINEERING, 2013, 53 : 190 - 200
  • [47] Arithmetic exponents in piecewise-affine planar maps
    Roberts, John A. G.
    Vivaldi, Franco
    PHYSICA D-NONLINEAR PHENOMENA, 2015, 298 : 1 - 12
  • [48] Robust visualization of strange attractors using affine arithmetic
    Paiva, Afonso
    de Figueiredo, Luiz Henrique
    Stolfi, Jorge
    COMPUTERS & GRAPHICS-UK, 2006, 30 (06): : 1020 - 1026
  • [49] Thermal rating assessment of overhead lines by Affine Arithmetic
    Piccolo, A
    Vaccaro, A
    Villacci, D
    ELECTRIC POWER SYSTEMS RESEARCH, 2004, 71 (03) : 275 - 283
  • [50] Modelling uncertainty in nonlinear analog systems with affine arithmetic
    Heupke, Wilhelm
    Grimm, Christoph
    Waldschmidt, Klaus
    APPLICATIONS OF SPECIFICATION AND DESIGN LANGUAGES FOR SOCS, 2006, : 155 - 169