Equivariant CR Yamabe problem

被引:0
|
作者
Ho, Pak Tung [1 ]
机构
[1] Tamkang Univ, Dept Math, New Taipei City 251301, Taiwan
关键词
Yamabe problem; CR manifold; Equivariant; CONJECTURE;
D O I
10.1007/s10231-024-01484-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
As a generalization of the Yamabe problem, Hebey and Vaugon considered the equivariant Yamabe problem: for a subgroup G of the isometry group, find a G-invariant metric whose scalar curvature is constant in a given conformal class. In this paper, we introduce the equivariant CR Yamabe problem and prove some related results.
引用
收藏
页码:289 / 306
页数:18
相关论文
共 50 条
  • [21] THE YAMABE PROBLEM
    LEE, JM
    PARKER, TH
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 17 (01) : 37 - 91
  • [23] A NOTE ON THE YAMABE PROBLEM
    Wang Xujia
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2005, 18 (04): : 322 - 326
  • [24] The Yamabe Problem with singularities
    Madani, Farid
    BULLETIN DES SCIENCES MATHEMATIQUES, 2008, 132 (07): : 575 - 591
  • [25] Hyperbolic Yamabe problem
    De-xing Kong
    Qi Liu
    Applied Mathematics-A Journal of Chinese Universities, 2017, 32 : 147 - 163
  • [26] MULTIPLICITY FOR THE YAMABE PROBLEM
    HEBEY, E
    VAUGON, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 312 (02): : 237 - 240
  • [27] Hyperbolic Yamabe problem
    Kong De-xing
    Liu Qi
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2017, 32 (02) : 147 - 163
  • [28] The second CR Yamabe invariant
    Barbosa, Ezequiel
    Lemos, Flavio
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (8-9) : 1187 - 1214
  • [29] NOTE ON THE YAMABE PROBLEM
    HEBEY, E
    VAUGON, M
    JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 96 (01) : 31 - 37
  • [30] Convergence of the CR Yamabe flow
    Ho, Pak Tung
    Sheng, Weimin
    Wang, Kunbo
    MATHEMATISCHE ANNALEN, 2019, 373 (1-2) : 743 - 830