Flexural fatigue behavior of ultra-high performance fiber reinforced concrete

被引:0
|
作者
Deng, Pengru [1 ]
Kuwagaki, Junya [2 ]
Matsumoto, Takashi [3 ]
机构
[1] Cent South Univ, Natl Engn Res Ctr High speed Railway Construct Tec, Changsha 410075, Peoples R China
[2] Hokkaido Univ, Grad Sch Engn, Sapporo, Hokkaido 0608628, Japan
[3] Hokkaido Univ, Fac Engn, Sapporo, Hokkaido 0608628, Japan
基金
中国国家自然科学基金;
关键词
UHPFRC; Fatigue; Flexure; Steel fibers; Multiple cracking; CEMENTITIOUS COMPOSITES;
D O I
10.1016/j.conbuildmat.2024.137888
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Even though UHPFRC has been extensively utilized in infrastructures owing to its excellent mechanical properties, its fatigue behavior remains unclear because related research is very limited. In this study, the fatigue characteristics of UHPFRC were investigated using a four-point bending experiment. In this study, the fatigue characteristics of UHPFRC were investigated using a four-point bending experiment. To determine the fatigue load conditions, static tests were conducted at different loading speeds and ages before, during, and after the fatigue tests. The obtained mechanical properties exhibited a clear dependence on loading rate and age duration. Consequently, a loading frequency of 3 Hz, which is close to that experienced in real infrastructures, was employed in the fatigue tests. A linear S-N relation with a 0.87 fatigue endurance limit was obtained on a semilogarithmic scale. Additionally, the fatigue life showed a close relationship with the initial cycle deformation. Correspondingly, threshold values of deformation indicators were proposed for predicting the occurrence of fatigue failure. Furthermore, a linear positive relationship was found between the density of multiple fine cracks and fatigue life, based on post-fatigue crack measurements using a microscope. The relatively narrow crack width compared to other cementitious composites demonstrated UHPFRC's superior resistance to corrosion factors. Consistent with the linear S-N relation, the structural degradation appears to be governed by a fiber slippage-topull mechanism, as no fiber rupture was observed.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Flexural Performance of Ultra-High Performance Concrete Slabs with Glass Fiber Net
    Deng Z.
    Lu Y.
    Gong M.
    Gui Y.
    Jing X.
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2022, 55 (06): : 621 - 631
  • [23] Experimental study on flexural fatigue behavior of composite T-beams in ultra-high performance concrete reinforced and normal-strength concrete
    Li, Aijun
    Yang, Zijiang
    Liu, Shizhong
    Liu, Yanhai
    Liu, Heng
    INTERNATIONAL JOURNAL OF FATIGUE, 2023, 167
  • [24] Strain Rate Dependent Tensile Behavior of Ultra-High Performance Fiber Reinforced Concrete
    Wille, K.
    El-Tawil, S.
    Naaman, A. E.
    HIGH PERFORMANCE FIBER REINFORCED CEMENT COMPOSITES 6, 2012, 2 : 381 - +
  • [25] Behavior of ultra-high performance fiber reinforced concrete columns under blast loading
    Aoude, Hassan
    Dagenais, Frederic P.
    Burrell, Russell P.
    Saatcioglu, Murat
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2015, 80 : 185 - 202
  • [26] Flexural behavior of GFRP and steel bars reinforced lightweight ultra-high performance fiber-reinforced concrete beams with various reinforcement ratios
    Li, Xiaobing
    Zhang, Wei
    Zhang, Chunxiao
    Liu, Jingbiao
    Li, Lei
    Wang, Shihe
    STRUCTURES, 2024, 70
  • [27] Flexural and shear behavior of ultra-high performance concrete segmental joints
    Limpaninlachat, Pornpen
    Kunawisarut, Atichon
    Bui, Linh Van Hong
    Jirawattanasomkul, Tidarut
    Jongvivatsakul, Pitcha
    Likitlersuang, Suched
    STRUCTURES, 2023, 56
  • [28] Mechanical degradation of ultra-high performance concrete under flexural fatigue loading
    Cerqueira, Nabila Rezende de Almeida
    Monteiro, Vitor Moreira de Alencar
    Souza, Felipe Rodrigues de
    Cardoso, Daniel Carlos Taissum
    Silva, Flavio de Andrade
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 391
  • [29] Tensile behavior of textile reinforced ultra-high performance concrete
    Yao, Yiming
    Sun, Yuanfeng
    Zhai, Mengchao
    Chen, Can
    Lu, Cong
    Wang, Jingquan
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 411
  • [30] Flexural Properties of Ultra-high Performance Concrete Under Fiber Synergistic Effect
    Li F.
    Liu G.
    Liu M.
    Yang Z.
    Mu B.
    Su J.
    Jiang Y.
    Tongji Daxue Xuebao/Journal of Tongji University, 2023, 51 (12): : 1835 - 1844