Transforming Digital Marketing with Generative AI

被引:2
|
作者
Islam, Tasin [1 ]
Miron, Alina [1 ]
Nandy, Monomita [2 ]
Choudrie, Jyoti [3 ]
Liu, Xiaohui [1 ]
Li, Yongmin [1 ]
机构
[1] Brunel Univ London, Dept Comp Sci, London UB8 3PH, England
[2] Brunel Univ London, Brunel Business Sch, London UB8 3PH, England
[3] Univ Hertfordshire, Hertfordshire Business Sch, Hatfield AL10 9AB, England
关键词
generative AI; deep learning; e-commerce; digital marketing; SOCIAL MEDIA; PERSONALIZATION; OPTIMIZATION; TECHNOLOGY; CHALLENGES; STRATEGIES; COLLECTION;
D O I
10.3390/computers13070168
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The current marketing landscape faces challenges in content creation and innovation, relying heavily on manually created content and traditional channels like social media and search engines. While effective, these methods often lack the creativity and uniqueness needed to stand out in a competitive market. To address this, we introduce MARK-GEN, a conceptual framework that utilises generative artificial intelligence (AI) models to transform marketing content creation. MARK-GEN provides a comprehensive, structured approach for businesses to employ generative AI in producing marketing materials, representing a new method in digital marketing strategies. We present two case studies within the fashion industry, demonstrating how MARK-GEN can generate compelling marketing content using generative AI technologies. This proposition paper builds on our previous technical developments in virtual try-on models, including image-based, multi-pose, and image-to-video techniques, and is intended for a broad audience, particularly those in business management.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] The ChatGPT effect and transforming nursing education with generative AI: Discussion paper
    Gosak, Lucija
    Pruinelli, Lisiane
    Topaz, Maxim
    Stiglic, Gregor
    NURSE EDUCATION IN PRACTICE, 2024, 75
  • [32] How Text-to-Image Generative AI Is Transforming Mediated Action
    Vartiainen, Henriikka
    Tedre, Matti
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2024, 44 (02) : 12 - 22
  • [33] Transforming Education With Generative AI (GAI): Key Insights and Future Prospects
    Lang, Qi
    Wang, Minjuan
    Yin, Minghao
    Liang, Shuang
    Song, Wenzhuo
    IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, 2025, 18 : 230 - 242
  • [34] Application of AI technology in modern digital marketing environment
    Nair, Kiran
    Gupta, Ruchi
    WORLD JOURNAL OF ENTREPRENEURSHIP MANAGEMENT AND SUSTAINABLE DEVELOPMENT, 2021, 17 (03) : 318 - 328
  • [35] Accelerating Innovation With Generative AI: AI-Augmented Digital Prototyping and Innovation Methods
    Bilgram V.
    Laarmann F.
    IEEE Engineering Management Review, 2023, 51 (02): : 18 - 25
  • [36] AdvisorAI: Transforming Graphic Advertising with Generative AI-Enhanced Design Strategies
    Wu, Pengfei
    Li, Xiaomei
    He, Ziming
    Fan, Ling
    HCI INTERNATIONAL 2024-LATE BREAKING POSTERS, HCII 2024, PT II, 2025, 2320 : 295 - 304
  • [37] Transforming geography education: the role of generative AI in curriculum, pedagogy, assessment, and fieldwork
    Lee, Jongwon
    Cimova, Tereza
    Foster, Ellen J.
    France, Derek
    Krajnakova, Lenka
    Moorman, Lynn
    Rewhorn, Sonja
    Zhang, Jiaqi
    INTERNATIONAL RESEARCH IN GEOGRAPHICAL AND ENVIRONMENTAL EDUCATION, 2025,
  • [38] President’s Page Digital twins in the era of generative AI
    Herrmann, Felix J.
    Leading Edge, 2023, 42 (11): : 730 - 732
  • [39] Generative AI in English Education: Harnessing ChatGPT for Digital Learning
    Khiem, H. G.
    Huong, H. L.
    Triet, M. N.
    Khanh, H., V
    Phuc, N. T.
    Khoa, T. D.
    Hien, N. Q.
    Tung, L. K.
    Nam, T. B.
    Vinh, N. T.
    Kha, N. H.
    Thuan, Q. T.
    Bang, L. K.
    Minh, N., V
    Ngan, N. T. K.
    Qu, T. L.
    EMERGING TECHNOLOGIES FOR EDUCATION, PT II, SETE 2023, 2024, 14607 : 147 - 157
  • [40] Generative AI-Driven Digital Twin for Mobile Networks
    Chai, Haoye
    Wang, Huandong
    Li, Tong
    Wang, Zhaocheng
    IEEE NETWORK, 2024, 38 (05): : 84 - 92