Sentiment Analysis: Effect of Combining BERT as an Embedding Technique with CNN Model for Tunisian Dialect

被引:0
|
作者
Mechti, Seifeddine [1 ]
Faiz, Rim [2 ]
Khoufi, Nabil [3 ]
Antit, Shaima [4 ]
Krichen, Moez [3 ]
机构
[1] Univ Sfax, LARODEC Lab, ISG Tunis, ISSEPS, Sfax, Tunisia
[2] Univ Carthage, LARODEC Lab, IHEC, Carthage, Tunisia
[3] Univ Sfax, MIRACL Lab, FSEGS, Sfax, Tunisia
[4] Univ Sfax, REDCAD Lab, ENIS, Sfax, Tunisia
关键词
Sentiment Analysis; Embedding technique; Deep Learning; BERT; RoBERTa; Tunisian Dialect;
D O I
10.1007/978-3-031-51664-1_22
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present an enhanced BERT methodology for sentiment classification of a Tunisian corpus. We introduce a Tunisian optimized BERT model, named TunRoBERTa, which surpasses the performance of Multilingual-BERT, CNN, CNN combined with LSTM, and RoBERTa. Additionally, we incorporate TunRoBERTa as an embedding technique with Convolutional Neural Networks (CNN). The experimental results demonstrate that the combination of TunRoBERTa and CNN yields the highest performance compared to the previous models. Our findings outperform Multilingual-BERT, CNN, and CNN combined with LSTM.
引用
收藏
页码:309 / 320
页数:12
相关论文
共 50 条
  • [21] Adaptive Thresholding for Sentiment Analysis Across Online Reviews Based on BERT Model BERT-based Adaptive Thresholding for Sentiment Analysis
    Lu, Zijie
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON MODELING, NATURAL LANGUAGE PROCESSING AND MACHINE LEARNING, CMNM 2024, 2024, : 70 - 75
  • [22] Sentiment analysis of Chinese stock reviews based on BERT model
    Li, Mingzheng
    Chen, Lei
    Zhao, Jing
    Li, Qiang
    APPLIED INTELLIGENCE, 2021, 51 (07) : 5016 - 5024
  • [23] Network Public Opinion Sentiment Analysis based on Bert Model
    Dong, Qian
    Sun, Tingting
    Xu, Yan
    Xu, Xuguang
    Zhong, Mei
    Yan, Kai
    2022 IEEE 10TH INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATION AND NETWORKS (ICICN 2022), 2022, : 662 - 666
  • [24] Sentiment analysis of Chinese stock reviews based on BERT model
    Mingzheng Li
    Lei Chen
    Jing Zhao
    Qiang Li
    Applied Intelligence, 2021, 51 : 5016 - 5024
  • [25] An Improved BERT and Syntactic Dependency Representation Model for Sentiment Analysis
    Liu, Wenfeng
    Yi, Jing
    Hu, Zhanliang
    Gao, Yaling
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [26] BERT-deep CNN: state of the art for sentiment analysis of COVID-19 tweets
    Javad Hassannataj Joloudari
    Sadiq Hussain
    Mohammad Ali Nematollahi
    Rouhollah Bagheri
    Fatemeh Fazl
    Roohallah Alizadehsani
    Reza Lashgari
    Ashis Talukder
    Social Network Analysis and Mining, 13
  • [27] BERT-deep CNN: state of the art for sentiment analysis of COVID-19 tweets
    Joloudari, Javad Hassannataj
    Hussain, Sadiq
    Nematollahi, Mohammad Ali
    Bagheri, Rouhollah
    Fazl, Fatemeh
    Alizadehsani, Roohallah
    Lashgari, Reza
    Talukder, Ashis
    SOCIAL NETWORK ANALYSIS AND MINING, 2023, 13 (01)
  • [28] Enhancing BERT Representation With Context-Aware Embedding for Aspect-Based Sentiment Analysis
    Li, Xinlong
    Fu, Xingyu
    Xu, Guangluan
    Yang, Yang
    Wang, Jiuniu
    Jin, Li
    Liu, Qing
    Xiang, Tianyuan
    IEEE ACCESS, 2020, 8 : 46868 - 46876
  • [29] A Combined CNN and LSTM Model for Arabic Sentiment Analysis
    Alayba, Abdulaziz M.
    Palade, Vasile
    England, Matthew
    Iqbal, Rahat
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, CD-MAKE 2018, 2018, 11015 : 179 - 191
  • [30] Emotional Similarity Word Embedding Model for Sentiment Analysis
    Matsumoto, Kazuyuki
    Matsunaga, Takumi
    Yoshida, Minoru
    Kita, Kenji
    COMPUTACION Y SISTEMAS, 2022, 26 (02): : 875 - 886