The intrinsic quantum anomalous Hall effect in TaPdXTe (X = S, Se) monolayers

被引:0
|
作者
Wei, Haofeng [1 ]
Wu, Yanzhao [1 ]
Tong, Junwei [2 ]
Deng, Li [1 ]
Yin, Xiang [1 ]
Zhang, Zhijun [3 ]
Zhang, Xianmin [1 ]
机构
[1] Northeastern Univ, Sch Mat Sci & Engn, Minist Educ, Key Lab Anisotropy & Texture Mat, Shenyang 110819, Peoples R China
[2] Free Univ Berlin, Dept Phys, D-14195 Berlin, Germany
[3] Liaoning Inst Sci & Technol, Benxi 117004, Peoples R China
基金
中国国家自然科学基金;
关键词
TOTAL-ENERGY CALCULATIONS; SEMICONDUCTORS; INSULATOR;
D O I
10.1039/d4tc02809k
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The search for high-performance intrinsic quantum anomalous Hall (QAH) insulators is crucial for the development of topological electronics. Here, based on density-functional theory calculations, TaPdSTe and TaPdSeTe monolayers are demonstrated to be intrinsic QAH insulators with topological band gaps of 88 and 79 meV, respectively. Both TaPdSTe and TaPdSeTe monolayers show an out-of-plane magnetic anisotropy with the Curie temperatures of 260 and 262 K by Monte Carlo simulations, respectively. The calculated Chern number C for both materials is -1. The analysis of the electronic structures reveals that the ferromagnetic topological property is caused by the energy band inversions of dxz and dyz orbitals of Ta atoms. Additionally, the effects of biaxial strain on the magnetic and topological properties are discussed for the current TaPdSTe and TaPdSeTe monolayers. During -3 to 3% biaxial strains, TaPdSTe and TaPdSeTe monolayers maintain the QAH effect, but their topological band gaps increase gradually from compressive to tensile strains. This study presents two intrinsic topological insulators that can help develop low-power electronic devices. The search for high-performance intrinsic quantum anomalous Hall (QAH) insulators is crucial for the development of topological electronics.
引用
收藏
页码:15215 / 15223
页数:9
相关论文
共 50 条
  • [21] On the Nature of the Quantum Anomalous Hall Effect
    Fijalkowski, K. M.
    Grauer, S.
    Schreyeck, S.
    Winnerlein, M.
    Brunner, K.
    Thomale, R.
    Gould, C.
    Molenkamp, L. W.
    2018 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS (CPEM 2018), 2018,
  • [22] The quantum anomalous Hall effect reloaded
    Pacchioni, Giulia
    NATURE REVIEWS MATERIALS, 2021, 6 (11) : 968 - 968
  • [23] Observing the quantum anomalous Hall effect
    Ling Wang
    NationalScienceReview, 2014, 1 (01) : 60 - 61
  • [24] Anomalous quantum Hall effect on sphere
    Jellal, Ahmed
    NUCLEAR PHYSICS B, 2008, 804 (03) : 361 - 382
  • [25] The quantum anomalous Hall effect reloaded
    Giulia Pacchioni
    Nature Reviews Materials, 2021, 6 : 968 - 968
  • [26] Quantum anomalous Hall effect for metrology
    Huang, Nathaniel J.
    Boland, Jessica L.
    Fijalkowski, Kajetan M.
    Gould, Charles
    Hesjedal, Thorsten
    Kazakova, Olga
    Kumar, Susmit
    Scherer, Hansjoerg
    APPLIED PHYSICS LETTERS, 2025, 126 (04)
  • [27] Quantum anomalous layer Hall effect
    Anirban, Ankita
    NATURE REVIEWS PHYSICS, 2023, 5 (05) : 271 - 271
  • [28] Colloquium: Quantum anomalous Hall effect
    Chang, Cui-Zu
    Liu, Chao -Xing
    MacDonald, Allan H.
    REVIEWS OF MODERN PHYSICS, 2023, 95 (01)
  • [29] Photonic Anomalous Quantum Hall Effect
    Mittal, Sunil
    Orre, Venkata Vikram
    Leykam, Daniel
    Chong, Y. D.
    Hafezi, Mohammad
    PHYSICAL REVIEW LETTERS, 2019, 123 (04)
  • [30] Quantum anomalous layer Hall effect
    Ankita Anirban
    Nature Reviews Physics, 2023, 5 : 271 - 271