Conservation Laws with Nonlocality in Density and Velocity and Their Applicability in Traffic Flow Modelling

被引:1
|
作者
Friedrich, Jan [1 ]
Goettlich, Simone [2 ]
Keimer, Alexander [3 ]
Pflug, Lukas [4 ]
机构
[1] Rhein Westfal TH Aachen, Inst Geometry & Appl Math, D-52064 Aachen, Germany
[2] Univ Mannheim, Dept Math, D-68131 Mannheim, Germany
[3] Friedrich Alexander Univ Erlangen Nurnberg, Dept Math, D-91058 Erlangen, Germany
[4] Friedrich Alexander Univ Erlangen Nurnberg, Competence Unit Sci Comp, D-91058 Erlangen, Germany
关键词
Nonlocal conservation laws; Traffic flow modelling; Godunov-type scheme; Fixed-point problem; Maximum principle; BALANCE LAWS; UNIQUENESS; EXISTENCE; REGULARITY; LIMIT;
D O I
10.1007/978-3-031-55264-9_30
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we present a nonlocal conservation law with a velocity depending on an integral term over a part of the space. The model class covers already existing models in literature, but it is also able to describe new dynamics mainly arising in the context of traffic flow modelling. We prove the existence and uniqueness of weak solutions of the nonlocal conservation law. Further, we provide a suitable numerical discretization and present numerical examples.
引用
收藏
页码:347 / 357
页数:11
相关论文
共 50 条
  • [41] Effects of limited velocity on traffic flow
    Yang, Xianqing
    Zhang, Wei
    Qiu, Kang
    Sun, Dapeng
    Zhao, Yuemin
    Jisuan Wuli/Chinese Journal of Computational Physics, 2007, 24 (04): : 499 - 504
  • [42] The effect of the relative velocity on traffic flow
    Xue, Y
    Dong, LY
    Yuan, YW
    Dai, SQ
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2002, 38 (02) : 230 - 234
  • [43] Optimal velocity model for traffic flow
    Sugiyama, Yuki
    Computer Physics Communications, 1999, 121 : 399 - 401
  • [44] Optimal velocity model for traffic flow
    Sugiyama, Y
    COMPUTER PHYSICS COMMUNICATIONS, 1999, 121 : 399 - 401
  • [45] Compressible two-phase flow modelling based on thermodynamically compatible systems of hyperbolic conservation laws
    Romenski, E.
    Drikakis, D.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2008, 56 (08) : 1473 - 1479
  • [46] On the derivation of the velocity and fundamental traffic flow diagram from the modelling of the vehicle-driver behaviors
    Bonzani, I.
    Mussone, L.
    MATHEMATICAL AND COMPUTER MODELLING, 2009, 50 (7-8) : 1107 - 1112
  • [47] Density waves in traffic flow
    Nagatani, T
    PHYSICAL REVIEW E, 2000, 61 (04) : 3564 - 3570
  • [48] Density fluctuations in traffic flow
    Yukawa, S
    Kikuchi, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (04) : 916 - 919
  • [49] Experimental characteristics of traffic flow for evaluation of traffic modelling
    Kerner, BS
    TRANSPORTATION SYSTEMS 1997, VOLS 1-3, 1997, : 765 - 770
  • [50] Role of conservation laws in the density matrix renormalization group
    Kiely, Thomas G.
    Mueller, Erich J.
    PHYSICAL REVIEW B, 2022, 106 (23)