Microencapsulated rice bran alleviates hyperlipidemia induced by high-fat diet via regulating lipid metabolism and gut microbiota

被引:0
|
作者
Wang, Danni [1 ]
Liu, Xianbiao [3 ]
Luo, Ting [1 ]
Wei, Teng [1 ]
Zhou, Zeqiang [1 ]
Deng, Zeyuan [1 ,2 ]
机构
[1] Nanchang Univ, State Key Lab Food Sci & Resources, Nanchang 330047, Jiangxi, Peoples R China
[2] Nanchang Univ, Int Inst Food Innovat, Nanchang, Jiangxi, Peoples R China
[3] Ganzhou Comprehens Inspect & Testing Inst, Jiangxi Prov Selenium Rich Prod Qual Supervis & In, Ganzhou, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
gut microbiota; hyperlipidemia; lipid metabolism; microencapsulation; rice bran; FIBER; OBESE; DYSLIPIDEMIA; ADIPOCYTES; RATS; OIL;
D O I
10.1111/1750-3841.17174
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Hyperlipidemia has been suggested to be associated with dysregulation of lipid metabolism and gut microbiota. The present study prepared microencapsulated rice bran (MRB) with high stability based on in situ rice bran oil embedding and investigated the effects of MRB on lipid metabolism and gut microbiota in hyperlipidemic mice induced by high-fat diet (HFD). Results showed that compared to HFD fed mice, lipid levels in serum and hepatic lipid accumulation were reduced in mice fed with MRB, which was potentially associated with the fact that MRB decreased the expression of genes related to lipogenesis (Srebp1c, Acc, Hmgcr, and Fas) and increased the expression of genes related to lipid catabolism (Hsl, Atgl) and oxidation (Acox, Cpt1, Ucp1) (p < 0.05). In gut, MRB supplementation significantly elevated the abundance of beneficial bacteria, such as Dubosiella and Faecalibaculum. In addition, significant increase in short-chain fatty acid was observed in mice from MRB groups when compared to HFD groups (p < 0.05). Overall, this study suggested that MRB could alleviate the hyperlipidemia induced by HFD, which was related to the alteration of lipid metabolism and gut microbiota.
引用
收藏
页码:5870 / 5883
页数:14
相关论文
共 50 条
  • [31] Orlistat ameliorates lipid dysmetabolism in high-fat diet-induced mice via gut microbiota modulation
    Huang, Chengyan
    He, Yuanhui
    Chai, Ping
    Liu, Zongxin
    Su, Sirui
    Zhang, Yanhui
    Luo, Yuelan
    Fu, Shuiping
    FRONTIERS IN MICROBIOLOGY, 2025, 16
  • [32] Natto alleviates hyperlipidemia in high-fat diet-fed mice by modulating the composition and metabolic function of gut microbiota
    Shang, Le -Yuan
    Zhang, Shuo
    Zhang, Min
    Sun, Xiao-Dong
    Wang, Qi
    Liu, Yu-Jie
    Zhao, Yan-Ni
    Zhao, Mei
    Wang, Peng-Jiao
    Gao, Xiu-Li
    JOURNAL OF FUNCTIONAL FOODS, 2024, 112
  • [33] Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota
    Zhou, Da
    Pan, Qin
    Shen, Feng
    Cao, Hai-xia
    Ding, Wen-jin
    Chen, Yuan-wen
    Fan, Jian-gao
    SCIENTIFIC REPORTS, 2017, 7
  • [34] Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota
    Da Zhou
    Qin Pan
    Feng Shen
    Hai-xia Cao
    Wen-jin Ding
    Yuan-wen Chen
    Jian-gao Fan
    Scientific Reports, 7
  • [35] Gougunao tea polysaccharides ameliorate high-fat diet-induced hyperlipidemia and modulate gut microbiota
    Deng, Qihuan
    Wang, Wenjun
    Zhang, Lieyuan
    Chen, Lingli
    Zhang, Qingfeng
    Zhang, Ying
    He, Sichen
    Li, Jingen
    FOOD & FUNCTION, 2023, 14 (02) : 703 - 719
  • [36] A high-fat diet and high-fat and high-cholesterol diet may affect glucose and lipid metabolism differentially through gut microbiota in mice
    Liang, Huijing
    Jiang, Fengling
    Cheng, Ruyue
    Luo, Yating
    Wang, Jiani
    Luo, Zihao
    Li, Ming
    Shen, Xi
    He, Fang
    EXPERIMENTAL ANIMALS, 2021, 70 (01) : 73 - 83
  • [37] Punicalagin prevents the bone loss of diabetic mice induced by high-fat diet via the metabolism of gut microbiota
    Gao, Jie
    Hua, Qinglian
    Chen, Lingling
    Zhang, Junwei
    Zhao, Haifeng
    Meng, Xiangyuan
    Zhong, Feng
    Gao, Tianlin
    EFOOD, 2024, 5 (05)
  • [38] Empagliflozin alleviates neuroinflammation by inhibiting astrocyte activation in the brain and regulating gut microbiota of high-fat diet mice
    Huang, Qiaoyan
    Liu, Liu
    Tan, Xiaoyao
    Wang, Shitong
    Wang, Sichen
    Luo, Jun
    Chen, Jiayi
    Yang, Na
    Jiang, Jiajun
    Liu, Yiming
    Hong, Xiao
    Guo, Shunyuan
    Shen, Yuejian
    Gao, Feng
    Feng, Huina
    Zhang, Jianliang
    Shen, Qing
    Li, Changyu
    Ji, Liting
    JOURNAL OF AFFECTIVE DISORDERS, 2024, 360 : 229 - 241
  • [39] Gut microbiota, host lipid metabolism and regulation mechanism of high-fat diet induced mice following different probiotics-fermented wheat bran intervention
    Wu, Qinghai
    Zhuang, Min
    Guo, Tianlong
    Bao, Sanyue
    Wu, Sachula
    Ke, Sheng
    Wang, Xuanyu
    Wang, Anqi
    Zhou, Zhongkai
    FOOD RESEARCH INTERNATIONAL, 2023, 174
  • [40] Modulation of fat metabolism and gut microbiota by resveratrol on high-fat diet-induced obese mice
    Campbell, C. Linda
    Yu, Renqiang
    Li, Fengzhi
    Zhou, Qin
    Chen, Daozhen
    Qi, Ce
    Yin, Yongxiang
    Sun, Jin
    DIABETES METABOLIC SYNDROME AND OBESITY-TARGETS AND THERAPY, 2019, 12 : 97 - 107