Cobalt(II) tetraphenylporphyrin trapped in the pores of Cu2O to enhance the C2+ selectivity towards acidic CO2 electroreduction

被引:1
|
作者
Wang, Yuda [1 ,2 ]
Cheng, Qingqing [1 ]
Zhang, Hui [1 ,2 ]
Ma, Lushan [3 ]
Yang, Hui [1 ]
机构
[1] Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai 201210, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Henan Univ Technol, Coll Chem & Chem Engn, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
CO; 2; electroreduction; Acidic environment; Spatial confinement; *CO coverage; Multicarbon product;
D O I
10.1016/j.cej.2024.152254
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Achieving the high selectivity of multicarbon (C2+) products during the acidic CO2 electroreduction remains a formidable challenge due to the serious hydrogen evolution reaction. Herein we report a Cu-based tandem catalyst by implanting molecular cobalt(II) tetraphenylporphyrin (CoTPP) into a porous Cu2O (Cu2O-CoTPP) for improving the C2+ selectivity in acidic media. Specially, CoTPP, as a CO-selective catalyst, is predominantly trapped in the nanopores of Cu2O with the assistance of negative-pressure ultrasonic. The CO2-CO and CO-C2+ tandem catalysis on Cu2O-CoTPP, cooperating with the pore confinement effect of porous Cu2O, boosts the local CO concentration and *CO coverage on Cu sites, evidenced by in-situ Raman spectra and finite element simulations. As a result, Cu2O-CoTPP attains a C2+ Faradaic efficiency of 91.2 % at an industrial-level current density of 800 mA/cm2 in an acidic environment (pH = 1.9), higher than the one (70.6 %) on pristine Cu2O. Meanwhile, such a tandem catalyst obtains a high single-pass carbon efficiency of 52.6 % and the good catalytic stability of at least 20 h. This study offers a spatially-confined Cu-based tandem catalyst for selective C2+ production, presenting the promising application in acidic environments.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Preanodized Cu Surface for Selective CO2 Electroreduction to C1 or C2+ Products
    Liu, Chang
    Gong, Jun
    Li, Jinmeng
    Yin, Jinlong
    Li, Wenzheng
    Gao, Zeyu
    Xiao, Li
    Wang, Gongwei
    Lu, Juntao
    Zhuang, Lin
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (18) : 20953 - 20961
  • [32] Towards understanding of CO2 electroreduction to C2+ products on copper-based catalysts
    Liu, Tianfu
    Sang, Jiaqi
    Li, Hefei
    Wei, Pengfei
    Zang, Yipeng
    Wang, Guoxiong
    BATTERY ENERGY, 2022, 1 (04):
  • [33] Shaping hollow spherical assemblies for enhanced Cu0/Cu+ interface to boost C2+ selectivity in CO2 electroreduction
    Li, Yu
    Shi, Haojun
    Li, Congcong
    Liu, Zhongliang
    Tang, Weizheng
    Zhang, Tingting
    Yin, Shixin
    Li, Huihui
    Li, Chunzhong
    SCIENCE CHINA-MATERIALS, 2024, 67 (11) : 3596 - 3601
  • [34] Altering the CO2 Electroreduction Pathways Towards C1 or C2+ Products via Engineering the Strength of Interfacial Cu-O Bond
    Zhang, Yu
    Li, Yicheng
    Gao, Nana
    Delmo, Ernest Pahuyo
    Hou, Guoyu
    Luo, Ali
    Wang, Dongyang
    Chen, Ke
    Antonietti, Markus
    Liu, Tianxi
    Tian, Zhihong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (36)
  • [35] The role of in situ generated morphological motifs and Cu(i) species in C2+ product selectivity during CO2 pulsed electroreduction
    Aran-Ais, Rosa M.
    Scholten, Fabian
    Kunze, Sebastian
    Rizo, Ruben
    Roldan Cuenya, Beatriz
    NATURE ENERGY, 2020, 5 (04) : 317 - 325
  • [36] Production of methanol from CO2 electroreduction at Cu2O and Cu2O/ZnO-based electrodes in aqueous solution
    Albo, Jonathan
    Saez, Alfonso
    Solla-Gullon, Jose
    Montiel, Vicente
    Irabien, Angel
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 176 : 709 - 717
  • [37] The role of in situ generated morphological motifs and Cu(i) species in C2+ product selectivity during CO2 pulsed electroreduction
    Rosa M. Arán-Ais
    Fabian Scholten
    Sebastian Kunze
    Rubén Rizo
    Beatriz Roldan Cuenya
    Nature Energy, 2020, 5 : 317 - 325
  • [38] Overcoming Low C2+ Yield in Acidic CO2 Electroreduction: Modulating Local Hydrophobicity for Enhanced Performance
    Yao, Zhe
    Lin, Rui
    SMALL, 2024, 20 (18)
  • [39] Constructing Ag/Cu2O Interface for Efficient Neutral CO2 Electroreduction to C2H4
    Wei, Zongnan
    Wang, Wenwen
    Shao, Tao
    Yang, Shuaibing
    Liu, Chang
    Si, Duanhui
    Cao, Rong
    Cao, Minna
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025, 64 (08)
  • [40] Revisiting the origin of enhanced C2+ selectivity on oxide-derived copper toward CO2 electroreduction
    Yu, Hui
    Zhao, Wenru
    Dong, Xiangzun
    Wang, Jiansong
    Wang, Wei
    Shen, Liu-Liu
    Zhang, Gui-Rong
    Mei, Donghai
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2025, 363