Phase Transformations of Individual Ti3O5 Nanocrystals Studied by In Situ Electron Microscopy

被引:0
|
作者
Hu, Yaowei [1 ]
Mba, Hilaire [1 ]
Picher, Matthieu [1 ]
Tokoro, Hiroko [5 ]
Ohkoshi, Shin-ichi [2 ]
Mariette, Celine [3 ]
Mandal, Ritwika [4 ]
Alashoor, Maryam [4 ]
Rabiller, Philippe [4 ]
Lorenc, Maciej [4 ]
Banhart, Florian [1 ]
机构
[1] Univ Strasbourg, CNRS, UMR 7504, Inst Phys & Chim Mat, F-67034 Strasbourg, France
[2] Univ Tokyo, Sch Sci, Dept Chem, Tokyo 1130033, Japan
[3] ESRF The European Synchrotron Facil, F-38043 Grenoble, France
[4] Univ Rennes, Inst Phys Rennes, CNRS, UMR 6251, F-35042 Rennes, France
[5] Univ Tsukuba, Inst Pure & Appl Sci, Dept Mat Sci, Tsukuba, Ibaraki 3058577, Japan
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2024年 / 128卷 / 33期
关键词
LAMBDA-TI3O5;
D O I
10.1021/acs.jpcc.4c02685
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Phase changes in individual submicron crystals of Ti3O5 are studied by in situ transmission electron microscopy. An irreversible transition from the stable beta- to the metastable lambda phase is induced by slow temperature changes in thermal equilibrium or by nanosecond laser pulses. The expansion of the crystals during the phase transformation is measured in real space by imaging and in reciprocal space by electron diffraction. An incomplete or suppressed phase transformation under slow heating indicates that the kinetic barrier for the thermal transformations from the beta to the lambda phase and to the high-temperature alpha phase is higher than in bulk material. On the other hand, a single nanosecond laser pulse at 1064 nm is found to induce a complete transformation from the beta to the lambda phase in submicron-size crystals of Ti3O5. As in previous studies, laser pulses at longer wavelengths (1064 nm) are found to be more appropriate than at a shorter wavelength (532 nm) where interband transitions and the rupture of bonds occur. Here, the laser pulses lead to a purely thermal switching from the beta to the lambda phase.
引用
收藏
页码:13991 / 13997
页数:7
相关论文
共 50 条
  • [21] PHASE-TRANSFORMATIONS AS STUDIED BY ELECTRON-MICROSCOPY
    VANLANDUYT, J
    VANTENDELOO, G
    AMELINCKX, S
    ULTRAMICROSCOPY, 1987, 23 (3-4) : 371 - 382
  • [22] Multscale real-time XRD probing of the semiconductor to metal ultrafast phase transition in Ti3O5 nanocrystals
    Marlette, Celine
    Volte, Alix
    Tokoro, Huoko
    Okhoshi, Shin-Ichi
    Lemke, Henrik
    Levantino, Matteo
    Cammarata, Marco
    Lorenc, Maviej
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2018, 74 : E401 - E401
  • [23] Temperature-induced structural and electronic phase transitions in λ-phase Ti3O5
    Yoshimatsu, K.
    Nakao, H.
    Kumigashira, H.
    PHYSICAL REVIEW MATERIALS, 2024, 8 (02)
  • [24] Superconductivity in Ti4O7 and γ-Ti3O5 films
    K. Yoshimatsu
    O. Sakata
    A. Ohtomo
    Scientific Reports, 7
  • [25] Preparing high purity λ-Ti3O5 and Li/λ-Ti3O5 as high-performance electromagnetic wave absorbers
    Fu, Xiankai
    Chen, Wanqi
    Hao, Xiaowen
    Zhang, Zhimin
    Tang, Ruolan
    Yang, Bo
    Zhao, Xiang
    Zuo, Liang
    JOURNAL OF MATERIALS CHEMISTRY C, 2021, 9 (25) : 7976 - 7981
  • [26] Ti3O5 and V2O3 Vaporization
    S. I. Lopatin
    S. M. Shugurov
    Z. G. Tyurnina
    N. G. Tyurnina
    Glass Physics and Chemistry, 2021, 47 : 38 - 41
  • [27] MAGNETIC TRANSITIONS IN TI3O5 AND TI4O7
    DANLEY, WJ
    MULAY, LN
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1969, 14 (03): : 350 - &
  • [28] Ti3O5 and V2O3 Vaporization
    Lopatin, S. I.
    Shugurov, S. M.
    Tyurnina, Z. G.
    Tyurnina, N. G.
    GLASS PHYSICS AND CHEMISTRY, 2021, 47 (01) : 38 - 41
  • [29] Superconductivity in Ti4O7 and γ-Ti3O5 films
    Yoshimatsu, K.
    Sakata, O.
    Ohtomo, A.
    SCIENTIFIC REPORTS, 2017, 7
  • [30] Progress in Ti3O5: Synthesis, properties and applications
    Zhao, Peng-fei
    Li, Guang-shi
    Li, Wen-li
    Cheng, Peng
    Pang, Zhong-ya
    Xiong, Xiao-lu
    Zou, Xing-li
    Xu, Qian
    Lu, Xiong-gang
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2021, 31 (11) : 3310 - 3327