Advanced artificial intelligence framework for T classification of TNM lung cancer in 18FDG-PET/CT imaging

被引:0
|
作者
Trabelsi, Mariem [1 ]
Romdhane, Hamida [1 ]
Ben Salem, Lotfi [2 ]
Ben-Sellem, Dorra [3 ]
机构
[1] Univ Tunis Manar, Higher Inst Med Technol, Lab Biophys & Med Technol, Tunis 1006, Tunisia
[2] Salah Azaeiz Inst, Radiotherapy Dept, Radiophys Unit, Blvd 9 Avril, Tunis 1006, Tunisia
[3] Univ Tunis Manar, Higher Inst Med Technol Tunis, Salah Azaiez Inst, Fac Med Tunis,Lab Biophys & Med Technol,Dept Nucl, Tunis, Tunisia
来源
关键词
lung cancer; deep learning; 18FDG-PET/CT imaging; tumor segmenta tion; TNM classifica tion; ResNet-50; pulmonary toolkit; ALGORITHM;
D O I
10.1088/2057-1976/ad81ff
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The integration of artificial intelligence (AI) into lung cancer management offers immense potential to revolutionize diagnostic and treatment strategies. The aim is to develop a resilient AI framework capable of two critical tasks: firstly, achieving accurate and automated segmentation of lung tumors and secondly, facilitating the T classification of lung cancer according to the ninth edition of TNM staging 2024 based on PET/CT imaging. This study presents a robust AI framework for the automated segmentation of lung tumors and T classification of lung cancer using PET/CT imaging. The database includes axial DICOM CT and (18)FDG-PET/CT images. A modified ResNet-50 model was employed for segmentation, achieving high precision and specificity. Reconstructed 3D models of segmented slices enhance tumor boundary visualization, which is essential for treatment planning. The Pulmonary Toolkit facilitated lobe segmentation, providing critical diagnostic insights. Additionally, the segmented images were used as input for the T classification using a CNN ResNet-50 model. Our classification model demonstrated excellent performance, particularly for T1a, T2a, T2b, T3 and T4 tumors, with high precision, F1 scores, and specificity. The T stage is particularly relevant in lung cancer as it determines treatment approaches (surgery, chemotherapy and radiation therapy or supportive care) and prognosis assessment. In fact, for Tis-T2, each increase of one centimeter in tumor size results in a worse prognosis. For locally advanced tumors (T3-T4) and regardless of size, the prognosis is poorer. This AI framework marks a significant advancement in the automation of lung cancer diagnosis and staging, promising improved patient outcomes.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] [18F]FDG-PET/CT Radiomics and Artificial Intelligence in Lung Cancer: Technical Aspects and Potential Clinical Applications
    Manafi-Farid, Reyhaneh
    Askari, Emran
    Shiri, Isaac
    Pirich, Christian
    Asadi, Mahboobeh
    Khateri, Maziar
    Zaidi, Habib
    Beheshti, Mohsen
    SEMINARS IN NUCLEAR MEDICINE, 2022, 52 (06) : 759 - 780
  • [32] Prognostic value of metabolic tumor volume on [18F]FDG PET/CT in addition to the TNM classification system of locally advanced non-small cell lung cancer
    Alexander Brose
    Isabelle Miederer
    Jochem König
    Eleni Gkika
    Jörg Sahlmann
    Tanja Schimek-Jasch
    Mathias Schreckenberger
    Ursula Nestle
    Jutta Kappes
    Matthias Miederer
    Cancer Imaging, 24 (1)
  • [33] Metastatic Colon Cancer to the Lung With No Detectable Primary Tumor, Mimicking Advanced Primary Lung Cancer on F-18 FDG PET/CT Imaging
    Kim, Hae Won
    Won, Kyoung Sook
    Kwon, Kun Young
    Choi, Byung Wook
    Zeon, Seok Kil
    CLINICAL NUCLEAR MEDICINE, 2010, 35 (03) : 184 - 186
  • [34] Persistent Lung Inflammation After Clinical Resolution of Community-Acquired Pneumonia as Measured by 18FDG-PET/CT Imaging
    Corrales-Medina, Vicente F.
    deKemp, Robert A.
    Chirinos, Julio A.
    Zeng, Wanzhen
    Wang, Jerry
    Waterer, Grant
    Beanlands, Rob S. B.
    Dwivedi, Girish
    CHEST, 2021, 160 (02) : 446 - 453
  • [35] Thoracic Staging in Lung Cancer: Prospective Comparison of 18F-FDG PET/MR Imaging and 18F-FDG PET/CT
    Heusch, Philipp
    Buchbender, Christian
    Koehler, Jens
    Nensa, Felix
    Gauler, Thomas
    Gomez, Benedikt
    Reiss, Henning
    Stamatis, Georgios
    Kuehl, Hilmar
    Hartung, Verena
    Heusner, Till A.
    JOURNAL OF NUCLEAR MEDICINE, 2014, 55 (03) : 373 - 378
  • [36] Role of 18FDG-PET/CT in the Staging of Large Primary Operable Breast Cancer.
    Groheux, D.
    Giacchetti, S.
    Hamy, A-S
    Vercellino, L.
    Delord, M.
    Berenger, N.
    Toubert, M-E
    Misset, J-L
    Hindie, E.
    Espie, M.
    CANCER RESEARCH, 2011, 71
  • [37] Metabolic Features of Patients with COVID-19 Lung Infection: Contribution of 18FDG-PET / CT
    Ardila Mantilla, J.
    Rotger Regi, A.
    Baquero Oliveros, M.
    Mari Hualde, A.
    Orcajo Rincon, J.
    Gomez Fernandez, I.
    Duran Barquero, C.
    Zamudio Rodriguez, D.
    Henao Celada, Y.
    Garcia de la Santa, J. Atance
    Alonso Farto, J. C.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2020, 47 (SUPPL 1) : S620 - S621
  • [38] Association of 18F-FDG uptake in PET/CT and KRAS mutation in advanced lung cancer
    Garcia-Velloso, Maria J.
    Caicedo, Carlos
    Lozano, Maria
    Vigil, Carmen
    Labiano, Tania
    Gonzalez-Forero, Maria
    Perez-Gracia, Jose L.
    Seijo, Luis
    Rodriguez, Macarena
    Richter, Jose
    JOURNAL OF NUCLEAR MEDICINE, 2011, 52
  • [39] Skeletal metastases in lung cancer:: Accuracy of 18FDG-PET in correlation with bone scintigraphy.
    Crespo-Jara, AA
    Garcia, MJ
    Gimenez, M
    Calvo, R
    Penuelas, I
    Gamez, C
    Richter, JA
    JOURNAL OF NUCLEAR MEDICINE, 1999, 40 (05) : 258P - 258P
  • [40] 18FDG-PET in lung cancer: relationship between histology, stage and EGFR with metabolic activity
    Rolfo, Christian Diego
    Valero, Marta
    Fuertes, Silvia
    Arrivi, Antonio
    JOURNAL OF THORACIC ONCOLOGY, 2009, 4 (09) : S743 - S743