Advanced artificial intelligence framework for T classification of TNM lung cancer in 18FDG-PET/CT imaging

被引:0
|
作者
Trabelsi, Mariem [1 ]
Romdhane, Hamida [1 ]
Ben Salem, Lotfi [2 ]
Ben-Sellem, Dorra [3 ]
机构
[1] Univ Tunis Manar, Higher Inst Med Technol, Lab Biophys & Med Technol, Tunis 1006, Tunisia
[2] Salah Azaeiz Inst, Radiotherapy Dept, Radiophys Unit, Blvd 9 Avril, Tunis 1006, Tunisia
[3] Univ Tunis Manar, Higher Inst Med Technol Tunis, Salah Azaiez Inst, Fac Med Tunis,Lab Biophys & Med Technol,Dept Nucl, Tunis, Tunisia
来源
关键词
lung cancer; deep learning; 18FDG-PET/CT imaging; tumor segmenta tion; TNM classifica tion; ResNet-50; pulmonary toolkit; ALGORITHM;
D O I
10.1088/2057-1976/ad81ff
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The integration of artificial intelligence (AI) into lung cancer management offers immense potential to revolutionize diagnostic and treatment strategies. The aim is to develop a resilient AI framework capable of two critical tasks: firstly, achieving accurate and automated segmentation of lung tumors and secondly, facilitating the T classification of lung cancer according to the ninth edition of TNM staging 2024 based on PET/CT imaging. This study presents a robust AI framework for the automated segmentation of lung tumors and T classification of lung cancer using PET/CT imaging. The database includes axial DICOM CT and (18)FDG-PET/CT images. A modified ResNet-50 model was employed for segmentation, achieving high precision and specificity. Reconstructed 3D models of segmented slices enhance tumor boundary visualization, which is essential for treatment planning. The Pulmonary Toolkit facilitated lobe segmentation, providing critical diagnostic insights. Additionally, the segmented images were used as input for the T classification using a CNN ResNet-50 model. Our classification model demonstrated excellent performance, particularly for T1a, T2a, T2b, T3 and T4 tumors, with high precision, F1 scores, and specificity. The T stage is particularly relevant in lung cancer as it determines treatment approaches (surgery, chemotherapy and radiation therapy or supportive care) and prognosis assessment. In fact, for Tis-T2, each increase of one centimeter in tumor size results in a worse prognosis. For locally advanced tumors (T3-T4) and regardless of size, the prognosis is poorer. This AI framework marks a significant advancement in the automation of lung cancer diagnosis and staging, promising improved patient outcomes.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] 18FDG-PET/CT Imaging of External Ear Sarcoidosis
    Guedj, Eric
    Chiche, Laurent
    Basely, Mathieu
    Cammilleri, Serge
    Durand, Jean-Marc
    Mundler, Olivier
    OTOLOGY & NEUROTOLOGY, 2010, 31 (04) : 699 - 700
  • [2] 18FDG-PET/CT utility in the assessment of TNM parameters in patients with pleural mesothelioma
    Notaristefano, A.
    Asabella, A. Niccoli
    Altini, C.
    Rubini, D.
    Rubini, G.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2010, 37 : S423 - S423
  • [3] 18FDG-PET/CT Improves Lung Cancer Staging and Treatment Selection Accuracy
    Majemi, Margarita
    Duenas, Nuria
    Farre, Nuria
    Pallares, Cinta
    Fernandez, Alejandro
    Camacho, Valle
    Torrego, Alfons
    Martinez, Elisabeth
    Virgili, Anna
    Vethencourt, Andrea
    Barnadas, Agusti
    JOURNAL OF THORACIC ONCOLOGY, 2015, 10 (09) : S576 - S576
  • [4] Use of 18FDG-PET/CT to predict outcome in patient with locally advanced pancreatic cancer
    Locantore, L.
    Mapelli, P.
    Incerti, E.
    Alongi, P.
    Gangemi, V.
    Passoni, P.
    Slim, N.
    Di Muzio, N.
    Gianolli, L.
    Picchio, M.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2015, 42 : S125 - S126
  • [5] Early Response In 18fdg-Pet/Ct As Prognostic Factor In Locally Advanced Cervical Cancer
    Garrido Botella, M. I.
    Rodriguez Roldan, M.
    Teja Ubach, M.
    Gonzalez Cantero, M.
    Rodriguez Rodriguez, I.
    Gonzalez Del Portillo, E.
    Belinchon Olmeda, B.
    Morera, R.
    RADIOTHERAPY AND ONCOLOGY, 2022, 170 : S1140 - S1141
  • [6] Dual-phase, 18FDG-PET/CT imaging in patients with various cancer types
    Drougas, D.
    Giannopoulou, C.
    Panagiotidis, E.
    Skilakaki, M.
    Rondogianni, P.
    Vlontzou, E.
    Chousianakou, E.
    Datseris, I.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2011, 38 : S278 - S278
  • [7] Impact of 18FDG-PET CT in the management of invasive bladder cancer
    Bertolaso, Pauline
    Brouste, Veronique
    Cazeau, Anne Laure
    De Clermont-Gallerande, Henri
    Bladou, Franck
    Cabart, Mathilde
    Ravaud, Alain
    Gross-Goupil, Marine
    JOURNAL OF CLINICAL ONCOLOGY, 2020, 38 (06)
  • [8] 18FDG-PET/CT IMAGING IN SUSPECTED ACUTE RENAL ALLOGRAFT REJECTION
    Lovinfosse, Pierre
    Weekers, Laurent
    Bovy, Christophe
    Bonvoisin, Catherine
    Grosch, Stephanie
    Krzesinski, Jean-Marie
    Hustinx, Roland
    Jouret, Francois
    TRANSPLANT INTERNATIONAL, 2015, 28 : 247 - 247
  • [9] The role of 18FDG-PET/CT target volume delineation in locally advanced cervical cancer radiotherapy
    Vicenzi, L.
    Costantini, S.
    Di Carlo, C.
    Cucciarelli, F.
    Mariucci, C.
    Palucci, A.
    Burroni, L.
    Valenti, M.
    Mantello, G.
    RADIOTHERAPY AND ONCOLOGY, 2021, 161 : S342 - S343
  • [10] Comparing Mri And 18fdg-Pet/Ct As Response Evaluation Tools In Locally Advanced Cervical Cancer
    Garrido Botella, M. I.
    Rodriguez Roldan, M.
    Teja Ubach, M.
    Gonzalez Cantero, M.
    Rodriguez Rodriguez, I.
    Gonzalez Del Portillo, E.
    Belinchon Olmeda, B.
    Morera, R.
    RADIOTHERAPY AND ONCOLOGY, 2022, 170 : S1139 - S1140