Tchebycheff Fractal Decomposition Algorithm for Bi-objective Optimization Problems

被引:0
|
作者
Aslimani, N. [1 ]
Talbi, E-G [1 ]
Ellaia, R. [2 ]
机构
[1] Univ Lille, Lille, France
[2] Mohammed V Univ Rabat, LERMA EMI, Rabat, Morocco
来源
METAHEURISTICS, MIC 2022 | 2023年 / 13838卷
关键词
Bi-objective optimization; Fractal decomposition; Tchebycheff scalarization; Adaptive reference points; EVOLUTIONARY ALGORITHM; WEIGHT DESIGN; MOEA/D;
D O I
10.1007/978-3-031-26504-4_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In most of the existing multi-objective metaheuristics based on decomposition, the reference points and the subspaces are statically defined. In this paper, a new adaptive strategy based on Tchebycheff fractals is proposed. A fractal decomposition of the objective space based on Tchebycheff functions, and adaptive strategies for updating the reference points are performed. The proposed algorithm outperforms popular multi-objective evolutionary algorithms both in terms of the quality of the obtained Pareto fronts (convergence, cardinality, diversity) and the search time.
引用
收藏
页码:246 / 259
页数:14
相关论文
共 50 条
  • [31] Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective Optimization
    Liu, Suyun
    Vicente, Luis Nunes
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2023, 198 (1) : 165 - 186
  • [32] A Trust-Region Algorithm for Bi-Objective Stochastic Optimization
    Kim, Sujin
    Ryu, Jong-hyun
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE (ICCS), 2011, 4 : 1422 - 1430
  • [33] Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective Optimization
    Suyun Liu
    Luis Nunes Vicente
    Journal of Optimization Theory and Applications, 2023, 198 : 165 - 186
  • [34] Bi-objective Multipopulation Genetic Algorithm for Multimodal Function Optimization
    Yao, Jie
    Kharma, Nawwaf
    Grogono, Peter
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2010, 14 (01) : 80 - 102
  • [35] An Efficient Conical Area Evolutionary Algorithm for Bi-objective Optimization
    Ying, Weiqin
    Xu, Xing
    Feng, Yuxiang
    Wu, Yu
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2012, E95A (08) : 1420 - 1425
  • [36] A model-based evolutionary algorithm for bi-objective optimization
    Zhou, AM
    Zhang, QF
    Jin, YC
    Tsang, E
    Okabe, T
    2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 2568 - 2575
  • [37] A primal–dual simplex algorithm for bi-objective network flow problems
    Augusto Eusébio
    José Rui Figueira
    Matthias Ehrgott
    4OR, 2009, 7 : 255 - 273
  • [38] A ranking algorithm for bi-objective quadratic fractional integer programming problems
    Sharma, Vikas
    Dahiya, Kalpana
    Verma, Vanita
    OPTIMIZATION, 2017, 66 (11) : 1913 - 1929
  • [39] A hybrid genetic algorithm for solving bi-objective traveling salesman problems
    Ma, Mei
    Li, Hecheng
    2ND ANNUAL INTERNATIONAL CONFERENCE ON INFORMATION SYSTEM AND ARTIFICIAL INTELLIGENCE (ISAI2017), 2017, 887
  • [40] Tracing the Pareto frontier in bi-objective optimization problems by ODE techniques
    Potschka, Andreas
    Logist, Filip
    Van Impe, Jan F.
    Bock, Hans Georg
    NUMERICAL ALGORITHMS, 2011, 57 (02) : 217 - 233