Rebound characteristics of flexible and stiff jute rubber/epoxy hybrid composite under low-velocity impact

被引:1
|
作者
Iftekhar, Hassan [1 ,2 ]
Nazir, Muhammad Shahid [3 ]
Mehboob, Ali [4 ]
Majeed, Khaliq [1 ]
Nawab, Yasir [2 ]
Ali, Zulfiqar [3 ]
机构
[1] COMSATS Univ Islamabad, Dept Chem Engn, Lahore, Punjab, Pakistan
[2] Natl Text Univ, Sch Engn & Technol, Faisalabad, Pakistan
[3] COMSATS Univ Islamabad, Dept Chem, Lahore Campus,Lahore Campus,1-5 KM Defence Rd,off, Islamabad 54000, Punjab, Pakistan
[4] Khalifa Univ, Adv Digital & Addit Mfg Ctr, Abu Dhabi, U Arab Emirates
关键词
Low-velocity impact; jute epoxy composite; reinforced composites; carboxylated nitrile butadiene rubber (XNBR); Charpy impact; rubber sandwiched composites; THERMOSETTING-COMPOSITES; BALLISTIC PERFORMANCE; FAILURE MECHANISMS; WOVEN; BEHAVIOR; STRENGTH; COMPRESSION; THICKNESS; CONTACT; FABRICS;
D O I
10.1177/07316844241278046
中图分类号
TB33 [复合材料];
学科分类号
摘要
This present work aims to assess the low-velocity impact response of novel configuration based on jute/rubber/epoxy flexible and stiff composites having varying layup sequences using an experimental study. The Charpy and drop weight impact tests are done according to the standards. Drop weight low-velocity impact test at an energy level of 15J was performed using a conical shape impactor. Carboxylated Nitrile Butadiene Rubber (XNBR) containing carbon fillers (N330 and N550) consisting 35 phr concentration each is used in the stacking sequence of the composite due to its high toughness and energy dissipation property. During drop weight tests conducted at a 15J energy level, the flexible RJRJR composite exhibited a peak force of 486 N, whereas the stiffer RJEJR composite demonstrated a peak force of 1075 N. The flexible composite shows no damage for the energy level tested. However, the stiff composite made using epoxy in between jute layers fails due to the matrix cracking in the composite. The peak force and specific energy absorption is dependent on stacking configuration and increases with the addition of rubber interface in the stiff composite. The energy absorption of stiff composite is higher as compared to flexible composite as indicated by the peak force.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Processing and low-velocity impact performance of nanophased woven carbon/epoxy composite laminates
    Hosur, M. V.
    Chowdhury, F. H.
    Jeelani, S.
    PROCEEDINGS OF THE TWELFTH U.S.-JAPAN CONFERENCE ON COMPOSITE MATERIALS, 2006, : 114 - +
  • [42] Influence of low-velocity impact on residual tensile properties of nonwoven flax/epoxy composite
    Habibi, Mohamed
    Laperriere, Luc
    Hassanabadi, Hojjat Mahi
    COMPOSITE STRUCTURES, 2018, 186 : 175 - 182
  • [43] Experimental and Numerical Analysis of Carbon/Epoxy Composite Plate Subject to Low-Velocity Impact
    Suada, Muhamad Giri
    Syamsudin, Hendri
    Romadon, Haroen
    JOURNAL OF ENGINEERING AND TECHNOLOGICAL SCIENCES, 2022, 54 (02): : 270 - 286
  • [44] An Experimental Investigation on Low-velocity Impact Response of Abaca/Epoxy Bio-composite
    Shaik, Mahaboob Subhani
    Subramanian, Hariharan S.
    JOURNAL OF NATURAL FIBERS, 2022, 19 (13) : 6977 - 6992
  • [45] Numerical analysis of low-velocity impact of carbon-basalt/epoxy hybrid laminates
    Maper, Ater
    Karuppanan, Saravanan
    Patil, Santosh S.
    INDIAN JOURNAL OF ENGINEERING AND MATERIALS SCIENCES, 2019, 26 (5-6) : 349 - 355
  • [46] Low-velocity impact of sandwich composite plates
    Gustin, J
    Mahinfalah, M
    Jazar, GN
    Aagaah, MR
    EXPERIMENTAL MECHANICS, 2004, 44 (06) : 574 - 583
  • [47] Dynamic response of smart hybrid composite plate subjected to low-velocity impact
    Khalili, S. M. R.
    Shokuhfar, A.
    Ghasemi, F. Ashenai
    Malekzadeh, K.
    JOURNAL OF COMPOSITE MATERIALS, 2007, 41 (19) : 2347 - 2370
  • [48] Low-velocity impact of sandwich composite plates
    J. Gustin
    M. Mahinfalah
    G. Nakhaie Jazar
    M. R. Aagaah
    Experimental Mechanics, 2004, 44 (6) : 574 - 583
  • [49] An Experimental and Numerical Determination on Low-Velocity Impact Response of Hybrid Composite Laminate
    Engin Erbayrak
    Ercument Ugur Yuncuoglu
    Yusuf Kahraman
    Beril Eker Gumus
    Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 2021, 45 : 665 - 681
  • [50] An Experimental and Numerical Determination on Low-Velocity Impact Response of Hybrid Composite Laminate
    Erbayrak, Engin
    Yuncuoglu, Ercument Ugur
    Kahraman, Yusuf
    Gumus, Beril Eker
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF MECHANICAL ENGINEERING, 2021, 45 (03) : 665 - 681