Evaluating enhanced predictive modeling of foam concrete compressive strength using artificial intelligence algorithms

被引:15
|
作者
Abdellatief, Mohamed [1 ,2 ,3 ]
Wong, Leong Sing [1 ]
Din, Norashidah Md [1 ]
Mo, Kim Hung [2 ,4 ]
Ahmed, Ali Najah [4 ,5 ]
El-Shafie, Ahmed [6 ]
机构
[1] Univ Tenaga Nas, Inst Energy Infrastruct, Jalan IKRAM UNITEN, Kajang 43000, Selangor, Malaysia
[2] Univ Malaya, Fac Engn, Dept Civil Engn, Kuala Lumpur 50603, Malaysia
[3] Higher Future Inst Engn & Technol Mansoura, Dept Civil Engn, Mansoura, Egypt
[4] Sunway Univ, Sch Engn & Technol, Dept Engn, 5 Jalan Univ,Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
[5] Sunway Univ, Res Ctr Human Machine Collaborat HUMAC, Sch Engn & Technol, 5 Jalan Univ,Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
[6] United Arab Emirates Univ, Natl Water & Energy Ctr, POB 15551, Al Ain, U Arab Emirates
来源
关键词
Foam concrete; Machine learning algorithms; Compressive strength prediction; Parametric; Analysis; CEMENT;
D O I
10.1016/j.mtcomm.2024.110022
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Artificial intelligence algorithms have recently demonstrated their efficacy in accurately predicting concrete properties by optimizing mixing proportions and overcoming design limitations. In this regard, foam concrete (FC) production presents a unique challenge, necessitating extensive experimental trials to attain specific properties such as compressive strength (CS). In this context, linear regression (LR), support vector regression (SVR), a multilayer-perceptron artificial neural network (MLP-ANN), and Gaussian process regression (GPR) algorithms, were used to predict the CS of FC. 261 experimental results were utilized, incorporating input variables such as density, water-to-cement ratio, and fine aggregate-to-cement ratio. During the training phase, 75 % of the experimental dataset was utilized. The experimental data is then validated using metrics such as coefficient of determination (R2), 2 ), root mean square error, and root mean error. In comparison, the GPR algorithm reveals high-accuracy towards the estimation of CS, as proved by its high R2 2-value, which equals 0.98, while the R2 2 for ANN, SVR, and LR are 0.97, 0.90, and 0.89, respectively. Additionally, parametric and sensitivity analyses were used to assess the performance of the GPR and LR algorithms. Results revealed that density exerted the most significant influence on CS, with the GPR model showing a pronounced negative impact of fine aggregate-to- cement ratio on CS, particularly in low-density FC, contrasting with the LR model. This study confirmed that the GPR algorithm provided reliable accuracy in predicting the CS of FC. Therefore, it is recommended to utilize the prediction algorithms within the range of input variables employed in this investigation for optimal results.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Artificial Intelligence and Machine Learning Techniques to Predict the Compressive Strength of Concrete at High Temperature
    Thenmozhi, S.
    Ramanjaneyulu, Batchu
    Chukka, Naga Dheeraj Kumar Reddy
    Chavan, Sayali S.
    Siddartha, Chintala
    Gorade, Swapnil Balkrishna
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2023, 44 (08): : 1376 - 1384
  • [42] Mixed artificial intelligence models for compressive strength prediction and analysis of fly ash concrete
    Liang, Wei
    Yin, Wei
    Zhong, Yu
    Tao, Qian
    Li, Kunpeng
    Zhu, Zhanyuan
    Zou, Zuyin
    Zeng, Yusheng
    Yuan, Shucheng
    Chen, Han
    ADVANCES IN ENGINEERING SOFTWARE, 2023, 185
  • [43] Using a hybrid artificial intelligence method for estimating the compressive strength of recycled aggregate self-compacting concrete
    Pazouki, Gholamreza
    Pourghorban, Arash
    EUROPEAN JOURNAL OF ENVIRONMENTAL AND CIVIL ENGINEERING, 2022, 26 (12) : 5569 - 5593
  • [44] Compressive Strength Prediction of Self-Compacting Concrete Incorporating Silica Fume Using Artificial Intelligence Methods
    Babajanzadeh, Milad
    Azizifar, Valiollah
    CIVIL ENGINEERING JOURNAL-TEHRAN, 2018, 4 (07): : 1542 - 1552
  • [45] Effect of magnetized water on foam stability and compressive strength of foam concrete
    Ghorbani, Saeid
    Ghorbani, Sahar
    Tao, Zhong
    de Brito, Jorge
    Tavakkolizadeh, Mohammadreza
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 197 : 280 - 290
  • [46] Predicting compressive strength of hollow concrete prisms using machine learning techniques and explainable artificial intelligence (XAI)
    Bin Inqiad, Waleed
    Dumitrascu, Elena Valentina
    Dobre, Robert Alexandru
    Khan, Naseer Muhammad
    Hammood, Abbas Hussein
    Henedy, Sadiq N.
    Khan, Rana Muhammad Asad
    HELIYON, 2024, 10 (17)
  • [47] On the Training Algorithms for Artificial Neural Network in Predicting Compressive Strength of Recycled Aggregate Concrete
    Hai Van Thi Mai
    Quan Van Tran
    Thuy-Anh Nguyen
    CIGOS 2021, EMERGING TECHNOLOGIES AND APPLICATIONS FOR GREEN INFRASTRUCTURE, 2022, 203 : 1867 - 1874
  • [48] Predictive compressive strength models for green concrete
    Murad, Yasmin
    Imam, Rana
    Abu Hajar, Husam
    Habeh, Dua'a
    Hammad, Abdullah
    Shawash, Zaid
    INTERNATIONAL JOURNAL OF STRUCTURAL INTEGRITY, 2020, 11 (02) : 169 - 184
  • [49] High strength concrete compressive strength prediction using an evolutionary computational intelligence algorithm
    Jibril M.M.
    Malami S.I.
    Muhammad U.J.
    Bashir A.
    Usman A.G.
    Salami B.A.
    Rotimi A.
    Ibrahim A.G.
    Abba S.I.
    Asian Journal of Civil Engineering, 2023, 24 (8) : 3727 - 3741
  • [50] PREDICTION OF CONCRETE COMPRESSIVE STRENGTH USING ULTRASONIC PULSE VELOCITY TEST AND ARTIFICIAL NEURAL NETWORK MODELING
    Khademi, Faezehossadat
    Akbari, Mahmood
    Jamal, Sayed Mohammadmehdi
    REVISTA ROMANA DE MATERIALE-ROMANIAN JOURNAL OF MATERIALS, 2016, 46 (03): : 343 - 350