Entropic relations for indistinguishable quantum particles

被引:0
|
作者
Lemm, Marius [1 ]
机构
[1] Univ Tubingen, Dept Math, D-72076 Tubingen, Germany
关键词
entanglement entropies; entanglement in extended quantum systems; quantum information; rigorous results in statistical mechanics; 2ND-ORDER ASYMPTOTICS; ENTANGLEMENT; STATE;
D O I
10.1088/1742-5468/ad343a
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The von Neumann entropy of a k-body-reduced density matrix gamma k quantifies the entanglement between k quantum particles and the remaining ones. In this paper, we rigorously prove general properties of this entanglement entropy as a function of k; it is concave for all 1 <= k <= N and non-decreasing until the midpoint k <=(sic)N/2(sic). The results hold for indistinguishable quantum particles and are independent of the statistics.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Teleportation with indistinguishable particles
    Marinatto, L
    Weber, T
    PHYSICS LETTERS A, 2001, 287 (1-2) : 1 - 6
  • [32] Entanglement of indistinguishable particles
    Sasaki, Toshihiko
    Ichikawa, Tsubasa
    Tsutsui, Izumi
    PHYSICAL REVIEW A, 2011, 83 (01):
  • [33] Statistics of Indistinguishable Particles
    Wittig, Curt
    JOURNAL OF PHYSICAL CHEMISTRY A, 2009, 113 (26): : 7244 - 7252
  • [34] CLASSIFICATION OF INDISTINGUISHABLE PARTICLES
    BACH, A
    EUROPHYSICS LETTERS, 1993, 21 (05): : 515 - 520
  • [35] Demonstrating quantum contextuality of indistinguishable particles by a single family of noncontextuality inequalities
    Hong-Yi Su
    Jing-Ling Chen
    Yeong-Cherng Liang
    Scientific Reports, 5
  • [36] Demonstrating quantum contextuality of indistinguishable particles by a single family of noncontextuality inequalities
    Su, Hong-Yi
    Chen, Jing-Ling
    Liang, Yeong-Cherng
    SCIENTIFIC REPORTS, 2015, 5
  • [37] Entropic uncertainty relations under localizations on discrete quantum groups
    Youn, Sang-Gyun
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (07)
  • [38] Some Comments on Indistinguishable Particles and Interpretation of the Quantum Mechanical Wave Function
    Goldin, Gerald A.
    GEOMETRIC METHODS IN PHYSICS, 2016, : 35 - 43
  • [39] Entropic uncertainty relations and entanglement detection from quantum designs
    Zhao, Yundu
    Huang, Shan
    Wu, Shengjun
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (39)
  • [40] Capacities of noiseless quantum channels for massive indistinguishable particles: Bosons versus fermions
    Sen , Aditi
    Sen, Ujjwal
    Gromek, Bartosz
    Bruss, Dagmar
    Lewenstein, Maciej
    PHYSICAL REVIEW A, 2007, 75 (02):