Enhanced fracture toughness in NbxTiZrHf high-entropy alloys by metastability engineering

被引:1
|
作者
Li, Qingze [1 ,2 ,3 ]
Li, Yuan [1 ,2 ,3 ]
Zhang, Nanqiu [1 ,2 ,3 ]
Xu, Xuanzhu [1 ,2 ,3 ]
Wang, Yipeng [1 ,2 ,3 ]
Zhou, Cangtao [2 ,3 ]
Zou, Yongtao [1 ,2 ,3 ]
机构
[1] Shenzhen Univ, Coll Appl Technol, Shenzhen 518061, Peoples R China
[2] Shenzhen Technol Univ, Coll Engn Phys, Shenzhen 518118, Peoples R China
[3] Shenzhen Technol Univ, Shenzhen Key Lab Ultraintense Laser & Adv Mat Tech, Shenzhen 518118, Peoples R China
基金
中国国家自然科学基金;
关键词
PHASE-TRANSFORMATION; MECHANICAL-PROPERTIES; HARDNESS; DEFORMATION; BEHAVIOR;
D O I
10.1063/5.0218290
中图分类号
O59 [应用物理学];
学科分类号
摘要
Compositional tuning of refractory high-entropy alloys (HEAs) is a powerful strategy to modulate their structural stability and mechanical properties. In this study, we investigate the sound velocities, elasticity, and mechanical properties of NbxTiZrHf (x = 0, 0.2, 0.4, 0.6, 0.8, and 1.0) HEAs using ultrasonic interferometry combined with Vickers hardness measurements. Notably, the metastable bcc Nb0.2TiZrHf HEAs exhibits exceptional fracture toughness, reaching up to 12.2 MPa<middle dot>m(1/2), which is 1.7-3.3 times higher than that of other bcc NbxTiZrHf counterparts. The mechanism for the abnormal strengthening in fracture toughness of Nb0.2TiZrHf HEAs is primarily attributed to the stress-induced bcc-to-hcp phase transition, which promotes plasticity/ductility strengthening and crack deflection. These findings provide deep insights into "metastability engineering" for designing refractory HEAs with superior fracture toughness and high strength.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Creep, fatigue, and fracture behavior of high-entropy alloys
    Li, Weidong
    Wang, Gang
    Wu, Shiwei
    Liaw, Peter K.
    JOURNAL OF MATERIALS RESEARCH, 2018, 33 (19) : 3011 - 3034
  • [22] Creep, fatigue, and fracture behavior of high-entropy alloys
    Weidong Li
    Gang Wang
    Shiwei Wu
    Peter K. Liaw
    Journal of Materials Research, 2018, 33 : 3011 - 3034
  • [23] High-entropy carbide-nitrides with enhanced toughness and sinterability
    Zhang, Pan
    Liu, Xiongjun
    Cai, Anhui
    Du, Qing
    Yuan, Xiaoyuan
    Wang, Hui
    Wu, Yuan
    Jiang, Suihe
    Lu, Zhaoping
    SCIENCE CHINA-MATERIALS, 2021, 64 (08) : 2037 - 2044
  • [24] Entropy engineering stimulates the thermoelectric performance of FeCoNiAlSix high-entropy alloys
    Nagarjuna, Cheenepalli
    Lee, Hansung
    Dewangan, Sheetal Kumar
    Madavali, Babu
    Sharma, Ashutosh
    Ahn, Byungmin
    MATERIALS RESEARCH BULLETIN, 2025, 188
  • [25] High-entropy(LaNdSmGdYb)(ZrCe)O thermal barrier coating material with significantly enhanced fracture toughness
    Donghui GUO
    Feifei ZHOU
    Baosheng XU
    Yiguang WANG
    You WANG
    Chinese Journal of Aeronautics , 2023, (04) : 556 - 564
  • [26] Deformation Behavior of High Strength-Toughness High-entropy Alloys:a Review
    Huang L.
    Sun Y.
    Cailiao Daobao/Materials Reports, 2023, 37 (20):
  • [27] From High-Entropy Alloys to High-Entropy Steels
    Raabe, Dierk
    Tasan, Cemal Cem
    Springer, Hauke
    Bausch, Michael
    STEEL RESEARCH INTERNATIONAL, 2015, 86 (10) : 1127 - 1138
  • [28] High-entropy alloys
    Easo P. George
    Dierk Raabe
    Robert O. Ritchie
    Nature Reviews Materials, 2019, 4 : 515 - 534
  • [29] High-Entropy Alloys
    Zhang, Yong
    Yeh, Jien-Wei
    Sun, Jian F.
    Lin, Jun P.
    Yao, Ke-Fu
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2015, 2015
  • [30] High-entropy alloys
    Canter, Neil
    TRIBOLOGY & LUBRICATION TECHNOLOGY, 2015, 71 (03) : 14 - 15