Accelerated Atmospheric to Hydrological Spread of Drought in the Yangtze River Basin under Climate

被引:0
|
作者
Zhang, Chengyuan [1 ,2 ]
Han, Zhiming [3 ]
Wang, Shuo [1 ,2 ]
Wang, Jiankun [1 ,2 ]
Cui, Chenfeng [1 ,2 ]
Liu, Junrong [4 ]
机构
[1] Northwest A&F Univ, Coll Water Resources & Architectural Engn, Xianyang 712100, Peoples R China
[2] Northwest A&F Univ, Key Lab Agr Soil & Water Engn Arid Area, Minist Educ, Xianyang 712100, Peoples R China
[3] Northwest A&F Univ, Coll Nat Resources & Environm, Xianyang 712100, Peoples R China
[4] China Coal Aerial Survey & Remote Sensing Grp Co L, Xian 710100, Peoples R China
关键词
GRACE; drought propagation; meteorological drought; hydrological drought; water security; POTENTIAL EVAPOTRANSPIRATION; CHINA; DATASET; SEVERITY; SPEI;
D O I
10.3390/rs16163033
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Persistent droughts pose a threat to agricultural production, and the changing environment worsens the risk of drought exposure. Understanding the propagation of drought in changing environments and assessing possible impact factors can help in the early detection of drought, guiding agricultural production practices. The current study cannot reflect the propagation status of drought to the total terrestrial hydrological drought, so this work creatively investigated the atmospheric to hydrological drought propagation time in the Yangtze River Basin under the dynamic and static perspectives based on the Standardized Precipitation Evapotranspiration Index and the Terrestrial Water Storage Anomalous Drought Index, fine-tuned the time scale to the seasonal scale, and explored the contributing capacity of the variable interactions. The results show that: (1) under the dynamic perspective, while the propagation time is decreasing in the annual scale, the spring season shows the opposite trend; and (2) large variability exists in the timing of drought propagation at spatial scales, with elevation playing the most important influential role, and bivariate interactions contributing stronger explanations compared to single variables. This study highlights the importance of considering the impact of variable interactions and contributes to our understanding of the response of secondary droughts to upper-level droughts, providing valuable insights into the propagation of droughts to total terrestrial hydrologic drought.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Hydrological Drought Analysis in Namhan River Basin, Korea
    Kwak, Jaewon
    Kim, Duckgil
    Kim, Soojun
    Singh, Vijay P.
    Kim, Hungsoo
    JOURNAL OF HYDROLOGIC ENGINEERING, 2014, 19 (08)
  • [42] Projecting meteorological, hydrological and agricultural droughts for the Yangtze River basin
    Sun, Fengyun
    Mejia, Alfonso
    Zeng, Peng
    Che, Yue
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 696
  • [43] Possible Future Climate Change Impacts on the Hydrological Drought Events in the Weihe River Basin, China
    Yuan, Fei
    Ma, Mingwei
    Ren, Liliang
    Shen, Hongren
    Li, Yue
    Jiang, Shanhu
    Yang, Xiaoli
    Zhao, Chongxu
    Kong, Hao
    ADVANCES IN METEOROLOGY, 2016, 2016
  • [44] Comprehensive evaluation of hydrological models for climate change impact assessment in the Upper Yangtze River Basin, China
    Shanshan Wen
    Buda Su
    Yanjun Wang
    Jianqing Zhai
    Hemin Sun
    Ziyan Chen
    Jinlong Huang
    Anqian Wang
    Tong Jiang
    Climatic Change, 2020, 163 : 1207 - 1226
  • [45] Linkages between Meteorological and Hydrological Drought in the Jinsha River Basin under a Changing Environment
    Zhang, Lu
    Zhang, Zengxin
    Peng, Zhenhua
    Xu, Yang
    Zhang, Ying
    Mao, Jingqiao
    WATER, 2023, 15 (20)
  • [46] Comprehensive evaluation of hydrological models for climate change impact assessment in the Upper Yangtze River Basin, China
    Wen, Shanshan
    Su, Buda
    Wang, Yanjun
    Zhai, Jianqing
    Sun, Hemin
    Chen, Ziyan
    Huang, Jinlong
    Wang, Anqian
    Jiang, Tong
    CLIMATIC CHANGE, 2020, 163 (03) : 1207 - 1226
  • [47] Attribution Analysis of Hydrological Drought Risk Under Climate Change and Human Activities: A Case Study on Kuye River Basin in China
    Zhang, Ming
    Wang, Jinpeng
    Zhou, Runjuan
    WATER, 2019, 11 (10)
  • [48] HYDROLOGICAL VARIABILITY AND UNCERTAINTY OF LOWER MISSOURI RIVER BASIN UNDER CHANGING CLIMATE
    Qiao, Lei
    Pan, Zaitao
    Herrmann, Robert B.
    Hong, Yang
    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 2014, 50 (01): : 246 - 260
  • [49] Hydrological extremes in a southwestern Ontario river basin under future climate conditions
    Cunderlik, JM
    Simonovic, SP
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2005, 50 (04): : 631 - 654
  • [50] Hydrological responses of the upper reaches of Yangtze River to climate change
    Xu, D. L.
    Wu, Z. Y.
    Yang, Y.
    Hu, Z. Y.
    HYDRAULIC ENGINEERING III, 2015, : 93 - 100