Novel electrochemical process for recycling of valuable metals from spent lithium-ion batteries

被引:6
|
作者
Pei, Shaozhen [1 ,2 ]
Yan, Shuxuan [3 ]
Chen, Xiangping [4 ,5 ,6 ]
Li, Jing [4 ]
Xu, Junhua [1 ,2 ,7 ]
机构
[1] Chinese Acad Sci, Fujian Inst Res Struct Matter, Nucl Chem & Separat & Purificat Technol Lab, Fuzhou 350002, Fujian, Peoples R China
[2] Fujian Normal Univ, Coll Chem & Mat Sci, Fuzhou 350007, Fujian, Peoples R China
[3] Cent South Univ, Coll Chem & Chem Engn, Hunan Prov Key Lab Chem Power Sources, Changsha 410083, Hunan, Peoples R China
[4] Shaanxi Univ Sci & Technol, Sch Environm Sci & Engn, Xian 710021, Shaanxi, Peoples R China
[5] Hunan Normal Univ, Coll Chem & Chem Engn, Changsha 410081, Hunan, Peoples R China
[6] Hunan Normal Univ, Natl & Local Joint Engn Lab New Petrochem Mat & Fi, Changsha 410081, Hunan, Peoples R China
[7] Geol Survey Finland, POB 96, FI-02151 Espoo, Finland
基金
中国国家自然科学基金;
关键词
Valuable metals recycling; Lithium nickel cobalt manganate; Selective separation; Electrochemical deposition; Li recovery; RECOVERY; COBALT; SCRAP;
D O I
10.1016/j.wasman.2024.07.018
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Effective recovery of Li, Co, Ni and Mn from cathode materials of spent lithium-ion batteries (LIBs) has become a global concern. In this study, electrolysis of copper sulfate to produce sulfuric acid and electrons were utilized to recover Li, Co, Ni and Mn from spent LIBs. The obtained results showed that 93 % of Ni, 91 % of Co, 89 % of Mn and 94 % of Li were leached and 99 % of Cu was deposited during leaching process by adopting the 0.225 mol/L of copper sulfate with a solid/liquid ratio of 15 g/L at a current density of 50 mA/m2 and 80 degrees C for 4.5 h. Then, a current efficiency of 72 % for the cathode and 30 % for the anode was achieved at a current density of 40 mA/m2, 70 degrees C and pH 2.5 during electrodeposition process. The Ni-Co deposition followed the principle of anomalous codeposition and the complete deposition time of Co, Ni and Mn were 3 h, 9 h and 10 h, respectively. Eventually, the Ni, Co, Mn, Li and Cu can be recovered as Ni-Co alloy, MnO2 and Li2CO3 and Cu metals with the corresponding recovery rates of 99.40%, 91.00%, 90.68%, 85.59% and 89.55%, respectively. This study proposes a promising strategy for recycling cathode materials from spent LIBs without addition of chemical reductants and acids.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [41] Recycling Chain for Spent Lithium-Ion Batteries
    Werner, Denis
    Peuker, Urs Alexander
    Muetze, Thomas
    METALS, 2020, 10 (03)
  • [42] High-Selectivity Recycling of Valuable Metals from Spent Lithium-Ion Batteries Using Recyclable Deep Eutectic Solvents
    Zhang, Yaozhi
    Wang, Fang
    Zhang, Wanxiang
    Ren, Shuhang
    Hou, Yucui
    Wu, Weize
    CHEMSUSCHEM, 2024, 17 (09)
  • [43] Leaching Mechanisms of Recycling Valuable Metals from Spent Lithium-Ion Batteries by a Malonic Acid-Based Leaching System
    Fan, Ersha
    Yang, Jingbo
    Huang, Yongxin
    Lin, Jiao
    Arshad, Faiza
    Wu, Feng
    Li, Li
    Chen, Renjie
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (09) : 8532 - 8542
  • [44] Sustainable Recovery of Metals from Spent Lithium-Ion Batteries: A Green Process
    Chen, Xiangping
    Luo, Chuanbao
    Zhang, Jinxia
    Kong, Jiangrong
    Zhou, Tao
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2015, 3 (12): : 3104 - 3113
  • [45] Leaching valuable metals from spent lithium-ion batteries using the reducing agent methanol
    Kong, Lingyu
    Wang, Zhaowen
    Shi, Zhongning
    Hu, Xianwei
    Liu, Aimin
    Tao, Wenju
    Wang, Benping
    Wang, Qian
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (02) : 4258 - 4268
  • [46] Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries
    Sun, Liang
    Qiu, Keqiang
    WASTE MANAGEMENT, 2012, 32 (08) : 1575 - 1582
  • [47] Enhanced bioleaching of valuable metals from spent lithium-ion batteries using ultrasonic treatment
    Mohsen Nazerian
    Nazanin Bahaloo-Horeh
    Seyyed Mohammad Mousavi
    Korean Journal of Chemical Engineering, 2023, 40 : 584 - 593
  • [48] Enhanced bioleaching of valuable metals from spent lithium-ion batteries using ultrasonic treatment
    Nazerian, Mohsen
    Bahaloo-Horeh, Nazanin
    Mousavi, Seyyed Mohammad
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2023, 40 (03) : 584 - 593
  • [49] Separation and Recovery of Valuable Metals from Ammonia Leaching Solution of Spent Lithium-Ion Batteries
    Yu, Jiancheng
    Ma, Baozhong
    Qiu, Zhijun
    Wang, Chengyan
    Chen, Yongqiang
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (26) : 9738 - 9750
  • [50] Recovery of valuable metals from spent lithium-ion batteries through an ecofriendly catalytic approach
    Park, Hee Sun
    Yang, Hee Jung
    Kim, Suhyun
    Hong, Seung-Tae
    Hur, Nam Hwi
    JOURNAL OF POWER SOURCES, 2024, 594