Research trends of computational toxicology: a bibliometric analysis

被引:0
|
作者
Yarmohammadi, Fatemeh [1 ]
Hayes, A. Wallace [2 ,3 ]
Karimi, Gholamreza [4 ,5 ]
机构
[1] Kermanshah Univ Med Sci, Hlth Technol Inst, Med Biol Res Ctr, Kermanshah, Iran
[2] Univ S Florida, Coll Publ Hlth, Tampa, FL USA
[3] Michigan State Univ, Inst Integrat Toxicol, E Lansing, MI USA
[4] Mashhad Univ Med Sci, Sch Pharm, Dept Pharmacodynam & Toxicol, Mashhad, Iran
[5] Mashhad Univ Med Sci, Pharmaceut Technol Inst, Pharmaceut Res Ctr, Mashhad, Iran
关键词
artificial intelligence; deep learning; machine learning; predictive toxicology; COMPUTER-SIMULATION; TOXICITY; PREDICTION; TOOLS;
D O I
10.1093/toxres/tfae147
中图分类号
R99 [毒物学(毒理学)];
学科分类号
100405 ;
摘要
Background: Computational toxicology utilizes computer models and simulations to predict the toxicity of chemicals. Bibliometric studies evaluate the impact of scientific research in a specific field. Methods: A bibliometric analysis of the computational methods used in toxicity assessment was conducted on the Web of Science between 1977 and 2024 February 12. Results: Findings of this study showed that computational toxicology has evolved considerably over the years, moving towards more advanced computational methods, including machine learning, molecular docking, and deep learning. Artificial intelligence significantly enhances computational toxicology research by improving the accuracy and efficiency of toxicity predictions. Conclusion: Generally, the study highlighted a significant rise in research output in computational toxicology, with a growing interest in advanced methods and a notable focus on refining predictive models to optimize drug properties using tools like pkCSM for more precise predictions.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Research trends in biodiversity loss: a bibliometric analysis
    Tan, Yan-Ling
    Yiew, Thian-Hee
    Habibullah, Muzafar Shah
    Chen, Jen-Eem
    Kamal, Siti Nuur-Ila Mat
    Saud, Nur Adilah
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (02) : 2754 - 2770
  • [32] Trends in Breast Augmentation Research: A Bibliometric Analysis
    Ri, CholSik
    Yu, Jiang
    Mao, JiaXin
    Zhao, MuXin
    AESTHETIC PLASTIC SURGERY, 2022, 46 (06) : 2691 - 2711
  • [33] Research Trends of Macrophage Polarization: A Bibliometric Analysis
    Gao Han
    Huang Feng-Yan
    Wang Zhi-Ping
    中华医学杂志英文版, 2018, 131 (24) : 2968 - 2975
  • [34] Rockfall Research: A Bibliometric Analysis and Future Trends
    Briones-Bitar, Josue
    Carrion-Mero, Paul
    Montalvan-Burbano, Nestor
    Morante-Carballo, Fernando
    GEOSCIENCES, 2020, 10 (10) : 1 - 25
  • [35] Pain research in Croatia: Analysis of bibliometric trends
    Sapunar, Damir
    Kostic, Sandra
    Banozic, Adriana
    Ferhatovic, Lejla
    Puljak, Livia
    PERIODICUM BIOLOGORUM, 2011, 113 (02) : 137 - 140
  • [36] Trends in legal ethics research: a bibliometric analysis
    Valanciene, Lijana
    Valanciene, Dovile
    LEGAL ETHICS, 2022, 25 (1-2) : 109 - 133
  • [37] Update on Rhinoplasty Research Trends: A Bibliometric Analysis
    Ri, CholSik
    Ri, HyokJu
    Yu, Jiang
    Mao, JiaXin
    Zhao, MuXin
    AESTHETIC PLASTIC SURGERY, 2022, 46 (06) : 2950 - 2963
  • [38] Trends in Digital Marketing Research: Bibliometric Analysis
    Shpak, Nestor
    Rębilas, Rafal
    Kulyniak, Ihor
    Shulyar, Roman
    Horbal, Natalia
    CEUR Workshop Proceedings, 2023, 3403 : 449 - 465
  • [39] Evolving Trends of Indian Research Performance in Cryptography: A Bibliometric and Computational Investigation
    Ghosh, Biswajit
    Dutta, Saheli Pal
    Mallik, Ajoy
    JOURNAL OF SCIENTOMETRIC RESEARCH, 2020, 9 (03) : 253 - 267
  • [40] A bibliometric analysis of the trends and research topics of empirical research on TPACK
    Di Zou
    Xinyi Huang
    Lucas Kohnke
    Xieling Chen
    Gary Cheng
    Haoran Xie
    Education and Information Technologies, 2022, 27 : 10585 - 10609