Research trends of computational toxicology: a bibliometric analysis

被引:0
|
作者
Yarmohammadi, Fatemeh [1 ]
Hayes, A. Wallace [2 ,3 ]
Karimi, Gholamreza [4 ,5 ]
机构
[1] Kermanshah Univ Med Sci, Hlth Technol Inst, Med Biol Res Ctr, Kermanshah, Iran
[2] Univ S Florida, Coll Publ Hlth, Tampa, FL USA
[3] Michigan State Univ, Inst Integrat Toxicol, E Lansing, MI USA
[4] Mashhad Univ Med Sci, Sch Pharm, Dept Pharmacodynam & Toxicol, Mashhad, Iran
[5] Mashhad Univ Med Sci, Pharmaceut Technol Inst, Pharmaceut Res Ctr, Mashhad, Iran
关键词
artificial intelligence; deep learning; machine learning; predictive toxicology; COMPUTER-SIMULATION; TOXICITY; PREDICTION; TOOLS;
D O I
10.1093/toxres/tfae147
中图分类号
R99 [毒物学(毒理学)];
学科分类号
100405 ;
摘要
Background: Computational toxicology utilizes computer models and simulations to predict the toxicity of chemicals. Bibliometric studies evaluate the impact of scientific research in a specific field. Methods: A bibliometric analysis of the computational methods used in toxicity assessment was conducted on the Web of Science between 1977 and 2024 February 12. Results: Findings of this study showed that computational toxicology has evolved considerably over the years, moving towards more advanced computational methods, including machine learning, molecular docking, and deep learning. Artificial intelligence significantly enhances computational toxicology research by improving the accuracy and efficiency of toxicity predictions. Conclusion: Generally, the study highlighted a significant rise in research output in computational toxicology, with a growing interest in advanced methods and a notable focus on refining predictive models to optimize drug properties using tools like pkCSM for more precise predictions.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Visualising trends in computational thinking research from 2012 to 2021: A bibliometric analysis
    Chen, Hui E.
    Sun, Daner
    Hsu, Ting-Chia
    Yang, Yuqin
    Sun, Jin
    THINKING SKILLS AND CREATIVITY, 2023, 47
  • [2] A Bibliometric Analysis of Research Trends in Geopolymer
    Matsimbe, Jabulani
    Dinka, Megersa
    Olukanni, David
    Musonda, Innocent
    MATERIALS, 2022, 15 (19)
  • [3] Trends in Brain Research: A Bibliometric Analysis
    Simard, Marc-Andre
    Kozlowski, Diego
    Segal, Julia
    Messer, Mia
    Ocay, Don Daniel
    Saari, Toni
    Ferland, Catherine E.
    Lariviere, Vincent
    CANADIAN JOURNAL OF NEUROLOGICAL SCIENCES, 2025, 52 (02) : 214 - 224
  • [4] Bibliometric analysis of research on the trends in autophagy
    Hong, Ting
    Feng, Xinzhe
    Tong, Wenwen
    Xu, Weidong
    PEERJ, 2019, 7
  • [5] Trends on Gastrotricha research: a bibliometric analysis
    Araujo, Thiago Quintao
    Minowa, Axell Kou
    Garraffoni, Andre R. S.
    BIOLOGIA, 2024, 79 (07) : 2095 - 2107
  • [6] Research trends in multimodal metaphor: a bibliometric analysis
    Zhong, Zenan
    Wen, Suijun
    Chen, Shukun
    FRONTIERS IN PSYCHOLOGY, 2023, 14
  • [7] Trends in Breast Augmentation Research: A Bibliometric Analysis
    CholSik Ri
    Jiang Yu
    JiaXin Mao
    MuXin Zhao
    Aesthetic Plastic Surgery, 2022, 46 : 2691 - 2711
  • [8] The research trends of ferroptosis in diabetes: a bibliometric analysis
    Xiong, Liyuan
    Hu, Faquan
    Li, Zhengpin
    Zhou, Xuemei
    Zheng, Yujiao
    FRONTIERS IN PUBLIC HEALTH, 2024, 12
  • [9] Global Trends in Nutrigenomic Research: A Bibliometric Analysis
    Xu, Zhiyong
    Ma, Aimin
    Shipin Kexue/Food Science, 2020, 41 (05): : 237 - 245
  • [10] Research Trends of Macrophage Polarization: A Bibliometric Analysis
    Gao, Han
    Huang, Feng-Yan
    Wang, Zhi-Ping
    CHINESE MEDICAL JOURNAL, 2018, 131 (24) : 2968 - +