Contrastive Self-Supervised Learning for Globally Distributed Landslide Detection

被引:6
|
作者
Ghorbanzadeh, Omid [1 ]
Shahabi, Hejar [2 ]
Piralilou, Sepideh Tavakkoli [3 ]
Crivellari, Alessandro [4 ]
La Rosa, Laura Elena Cue [5 ]
Atzberger, Clement [1 ]
Li, Jonathan [6 ,7 ]
Ghamisi, Pedram [8 ]
机构
[1] Univ Nat Resources & Life Sci BOKU, Inst Geomat, A-1190 Vienna, Austria
[2] INRS, Ctr Eau Terre Environm, Quebec City, PQ G1K 9A9, Canada
[3] IARAI, A-1030 Vienna, Austria
[4] Natl Taiwan Univ, Dept Geog, Taipei 106319, Taiwan
[5] Wageningen Univ & Res, Lab Geoinformat Sci & Remote Sensing, NL-6708 PB Wageningen, Netherlands
[6] Univ Waterloo, Dept Geog & Environm Management, Waterloo, ON N2L 3G1, Canada
[7] Univ Waterloo, Dept Syst Design Engn, Waterloo, ON N2L 3G1, Canada
[8] Helmholtz Inst Freiberg Resource Technol, Helmholtz Zent Dresden Rossendorf, Freiberg, Germany
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Terrain factors; Feature extraction; Data models; Codes; Decoding; Benchmark testing; Deep learning; Landslides; Detection algorithms; Remote sensing; Hazardous areas; landslide detection; multispectral imagery; natural hazard; remote sensing;
D O I
10.1109/ACCESS.2024.3449447
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Remote Sensing (RS) field continuously grapples with the challenge of transforming satellite data into actionable information. This ongoing issue results in an ever-growing accumulation of unlabeled data, complicating interpretation efforts. The situation becomes even more challenging when satellite data must be used immediately to identify the effects of a natural hazard. Self-supervised learning (SSL) offers a promising approach for learning image representations without labeled data. Once trained, an SSL model can address various tasks with significantly reduced requirements for labeled data. Despite advancements in SSL models, particularly those using contrastive learning methods like MoCo, SimCLR, and SwAV, their potential remains largely unexplored in the context of instance segmentation and semantic segmentation of satellite imagery. This study integrates SwAV within an auto-encoder framework to detect landslides using deca-metric resolution multi-spectral images from the globally-distributed large-scale landslide4sense (L4S) 2022 benchmark dataset, employing only 1% and 10% of the labeled data. Our proposed SSL auto-encoder model features two modules: SwAV, which assigns features to prototype vectors to generate encoder codes, and ResNets, serving as the decoder for the downstream task. With just 1% of labeled data, our SSL model performs comparably to ten state-of-the-art deep learning segmentation models that utilize 100% of the labeled data in a fully supervised manner. With 10% of labeled data, our SSL model outperforms all ten fully supervised counterparts trained with 100% of the labeled data.
引用
收藏
页码:118453 / 118466
页数:14
相关论文
共 50 条
  • [31] Contrastive Self-Supervised Learning for Stress Detection from ECG Data
    Rabbani, Suha
    Khan, Naimul
    BIOENGINEERING-BASEL, 2022, 9 (08):
  • [32] Contrastive Transformation for Self-supervised Correspondence Learning
    Wang, Ning
    Zhou, Wengang
    Li, Hougiang
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 10174 - 10182
  • [33] Self-Supervised Contrastive Learning for Singing Voices
    Yakura, Hiromu
    Watanabe, Kento
    Goto, Masataka
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2022, 30 : 1614 - 1623
  • [34] JGCL: Joint Self-Supervised and Supervised Graph Contrastive Learning
    Akkas, Selahattin
    Azad, Ariful
    COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2022, WWW 2022 COMPANION, 2022, : 1099 - 1105
  • [35] SWIN transformer based contrastive self-supervised learning for animal detection and classification
    Agilandeeswari, L.
    Meena, S. Divya
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (07) : 10445 - 10470
  • [36] Cut-in maneuver detection with self-supervised contrastive video representation learning
    Nalcakan, Yagiz
    Bastanlar, Yalin
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (06) : 2915 - 2923
  • [37] Self-Supervised Spectral-Level Contrastive Learning for Hyperspectral Target Detection
    Wang, Yulei
    Chen, Xi
    Zhao, Enyu
    Song, Meiping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [38] CONTRASTIVE HEARTBEATS: CONTRASTIVE LEARNING FOR SELF-SUPERVISED ECG REPRESENTATION AND PHENOTYPING
    Wei, Crystal T.
    Hsieh, Ming-En
    Liu, Chien-Liang
    Tseng, Vincent S.
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 1126 - 1130
  • [39] Self-supervised Cross-stage Regional Contrastive Learning for Object Detection
    Yan, Junkai
    Yang, Lingxiao
    Gao, Yipeng
    Zheng, Wei-Shi
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 1044 - 1049
  • [40] Contrastive self-supervised representation learning framework for metal surface defect detection
    Mahe Zabin
    Anika Nahian Binte Kabir
    Muhammad Khubayeeb Kabir
    Ho-Jin Choi
    Jia Uddin
    Journal of Big Data, 10