Graphene-enhanced PCL electrospun nanofiber scaffolds for cardiac tissue engineering

被引:1
|
作者
Munoz-Gonzalez, Ana M. [1 ]
Leal-Marin, Sara [2 ,3 ]
Clavijo-Grimaldo, Dianney [4 ,5 ]
Glasmacher, Birgit [2 ,3 ]
机构
[1] Univ Nacl Colombia, Fac Engn, Bogota, Colombia
[2] Leibniz Univ Hannover, Inst Multiphase Proc, An der Univ 1, D-30823 Hannover, Germany
[3] Lower Saxony Ctr Biomed Engn, Implant Res & Dev NIFE, Hannover, Germany
[4] Univ Nacl Colombia, Sch Med, Bogota, Colombia
[5] Fdn Univ Sanitas, Grp INPAC, Fac Med, Bogota, Colombia
来源
关键词
Cardiac tissue engineering (CTE); myocardial infarction; polycaprolactone (PCL); graphene nanoplatelets (Gnp); electrospinning; biocompatibility; scaffold; POLYCAPROLACTONE; NANOCOMPOSITE;
D O I
10.1177/03913988241266088
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Cardiovascular diseases, particularly myocardial infarction, have significant healthcare challenges due to the limited regenerative capacity of injured heart tissue. Cardiac tissue engineering (CTE) offers a promising approach to repairing myocardial damage using biomaterials that mimic the heart's extracellular matrix. This study investigates the potential of graphene nanopowder (Gnp)-enhanced polycaprolactone (PCL) scaffolds fabricated via electrospinning to improve the properties necessary for effective cardiac repair. This work aimed to analyze scaffolds with varying graphene concentrations (0.5%, 1%, 1.5%, and 2% by weight) to determine their morphological, chemical, mechanical, and biocompatibility characteristics. The results presented that incorporating graphene improves PCL scaffolds' mechanical properties and cellular interactions. The optimal concentration of 1% graphene significantly enhanced mechanical properties and biocompatibility, promoting cell adhesion and proliferation. These findings suggest that Gnp-enhanced PCL scaffolds at this concentration can serve as a potent substrate for CTE providing insights into designing more effective biomaterials for myocardial restoration.
引用
收藏
页码:633 / 641
页数:9
相关论文
共 50 条
  • [31] Assessment of electrospun PCL scaffold for tissue engineering
    Del Gaudio, C
    Filippini, P
    Construsciere, V
    Di Federico, E
    Bianco, A
    Grigioni, M
    INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS, 2006, 29 (05): : 537 - 537
  • [32] Fabrication and characterisation of PCL and PCL/PLA scaffolds for tissue engineering
    Patricio, T.
    Domingos, M.
    Gloria, A.
    D'Amora, U.
    Coelho, J. F.
    Bartolo, P. J.
    RAPID PROTOTYPING JOURNAL, 2014, 20 (02) : 145 - 156
  • [33] Electrospun polycaprolactone (PCL) scaffolds embedded with europium hydroxide nanorods (EHNs) with enhanced vascularization and cell proliferation for tissue engineering applications
    Augustine, Robin
    Nethi, Susheel Kumar
    Kalarikkal, Nandakumar
    Thomas, Sabu
    Patra, Chitta Ranjan
    JOURNAL OF MATERIALS CHEMISTRY B, 2017, 5 (24) : 4660 - 4672
  • [34] Examining the Transmission of Visible Light through Electrospun Nanofibrous PCL Scaffolds for Corneal Tissue Engineering
    Himmler, Marcus
    Schubert, Dirk W.
    Fuchsluger, Thomas A.
    NANOMATERIALS, 2021, 11 (12)
  • [35] DESIGNING ELECTROSPUN SCAFFOLDS FOR TISSUE ENGINEERING
    Glasmacher, B.
    Chakradeo, T.
    Zemetsch, H.
    Szentivanyi, A.
    INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS, 2011, 34 (08): : 644 - 645
  • [36] PCL- And Gelatin-based Electrospun Biological Scaffolds For In Vitro Lung Tissue Engineering
    Moreira, A.
    Goncalves, A. M.
    Schellhorn, T.
    Leal, F.
    Ertl, P.
    Kohl, Y.
    Costa, P. F.
    TISSUE ENGINEERING PART A, 2022, 28 : 392 - 392
  • [37] Electrospun scaffolds for bone tissue engineering
    Di Martino A.
    Liverani L.
    Rainer A.
    Salvatore G.
    Trombetta M.
    Denaro V.
    MUSCULOSKELETAL SURGERY, 2011, 95 (2) : 69 - 80
  • [38] Biomimetic electrospun scaffolds for tissue engineering
    Hadjiargyrou, Michael
    FASEB JOURNAL, 2008, 22
  • [39] Electrospun scaffolds based on a PCL/starch blend reinforced with CaO nanoparticles for bone tissue engineering
    Garcia, Gabriel
    Moreno-Serna, Viviana
    Saavedra, Marcela
    Cordoba, Alexander
    Canales, Daniel
    Alfaro, Aline
    Guzman-Soria, Aldo
    Orihuela, Pedro
    Zapata, Sebastian
    Grande-Tovar, Carlos David
    Valencia-Llano, Carlos Humberto
    Zapata, Paula A.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 273
  • [40] Electrospun multifunctional tissue engineering scaffolds
    Chong Wang
    Min Wang
    Frontiers of Materials Science, 2014, 8 : 3 - 19