One of the most significant alloys to be employed in the automotive, aerospace, and military industries in recent years is A356 aluminium. Because of A356's excellent compatibility with other metals and nanoparticles, novel hybrid composites may be made using it. The characteristics of these hybrid composites are mostly the result of the additives' interaction with the A356 alloy's current elemental composition. Aluminium composites were synthesized through stir casting method by reinforcing 2%, and 4% SiC, 2% and 4% Al2O3 and 0.5%, 1%, 1.5%, 2% and 2.5% SiC and Al2O3 both. The homogeneous distribution of SiC and Al2O3 microparticles in reinforced composite is revealed by scanning electron microscopy (SEM). The addition of SiC and Al2O3 reinforcements greatly improved the mechanical characteristics of the synthesised composites; for example, a composite with 4% SiC reinforcement reached its maximum hardness and maximum tensile strength of 165 HV and 257 MPa respectively. Maximum elongation of 6.72% was observed for 0.5% SiC and 0.5% Al2O3 reinforced composite. Minimum wear rate is observed for 4% SiC reinforced composite material. This study aims to identify gaps in the potential variations and compatibility of various additives with one another in order to create a brand-new hybrid reinforced alloy suitable for automotive braking system applications: brake rotors made of a disc or a brake pad, depending on the properties of the hybrid reinforced alloy that was made. Hence, the current work presented focuses on the preparation of hybrid reinforcement of A356 with silicon carbide and alumina powders.