Simulation of Blood Flow Through a Patient-Specific Carotid Bifurcation Reconstructed Using Deep Learning Based Segmentation of Ultrasound Images

被引:0
|
作者
Djukic, Tijana [1 ,2 ]
Anic, Milos [2 ,3 ]
Gakovic, Branko [4 ]
Tomasevic, Smiljana [2 ,3 ]
Arsic, Branko [2 ,5 ]
Koncar, Igor [4 ]
Filipovic, Nenad [2 ,3 ]
机构
[1] Univ Kragujevac, Inst Informat Technol, Jovana Cvijica bb, Kragujevac 34000, Serbia
[2] Bioengn Res & Dev Ctr BioIRC, Prvoslava Stojanovica 6, Kragujevac 34000, Serbia
[3] Univ Kragujevac, Fac Engn, Sestre Janjica 6, Kragujevac 34000, Serbia
[4] Serbian Clin Ctr, Clin Vasc & Endovasc Surg, Dr Koste Todorovica 8, Belgrade 11000, Serbia
[5] Univ Kragujevac, Fac Sci, Radoja Domanovica 12, Kragujevac 34000, Serbia
关键词
deep learning; image segmentation; 3D reconstruction; finite element method; unsteady blood flow;
D O I
10.1007/978-3-031-60840-7_25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the diseases of the cardiovascular system is the formation of carotid artery stenosis. The existence of atherosclerotic plaque within the vessel wall causes changes in blood flow and can have serious consequences to the individual's health condition. Therefore early and appropriate clinical diagnostics is very important. One of the first clinical examinations for this disease is the ultrasound (US) examination. Three-dimensional (3D) reconstruction and blood flow simulation could be used to overcome some of the drawbacks of the US examination and improve the overall diagnostics. An approach that combines the deep learning techniques and 3D reconstruction and meshing algorithms is applied within this study to first create the model of patient-specific carotid bifurcation and then to perform unsteady blood flow simulation, with realistic boundary conditions. This type of simulations can provide quantitative hemodynamic data to the clinicians during US examination and can further help to improve the diagnostics and ensure a treatment that is more adapted to the particular patient.
引用
收藏
页码:201 / 206
页数:6
相关论文
共 50 条
  • [1] NUMERICAL SIMULATION OF BLOOD FLOW IN PATIENT-SPECIFIC STENOTIC CAROTID BIFURCATION GEOMETRIES
    Cummins, Megan
    Rossmann, Jenn S.
    IMECE2009: PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, VOL 2, 2010, : 173 - 178
  • [2] Haemodynamic conditions of patient-specific carotid bifurcation based on ultrasound imaging
    Sousa, Luisa C.
    Castro, Catarina F.
    Antonio, Carlos C.
    Santos, Andre
    Santos, Rosa
    Castro, Pedro
    Azevedo, Elsa
    Tavares, Joao Manuel R. S.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2014, 2 (03): : 157 - 166
  • [3] Application of a locally conservative Galerkin (LCG) method for modelling blood flow through a patient-specific carotid bifurcation
    Bevan, R. L. T.
    Nithiarasu, P.
    Van Loon, R.
    Sazonov, I.
    Luckraz, H.
    Garnham, A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2010, 64 (10-12) : 1274 - 1295
  • [4] Multiorgan Segmentation of CT Images Using Deep-Learning for Instant and Patient-Specific Dose Reporting
    Peng, Z.
    Fang, X.
    Shan, H.
    Liu, T.
    Pei, X.
    Yan, P.
    Wang, G.
    Liu, B.
    Kalra, M.
    Xu, X. G.
    MEDICAL PHYSICS, 2019, 46 (06) : E519 - E519
  • [5] Atrioventricular Blood Flow Simulation Based on Patient-Specific Data
    Mihalef, Viorel
    Metaxas, Dimitris
    Sussman, Mark
    Hurmusiadis, Vassilios
    Axel, Leon
    FUNCTIONAL IMAGING AND MODELING OF THE HEART, PROCEEDINGS, 2009, 5528 : 386 - +
  • [6] Direct Simulations of Transitional Flow in a Patient-Specific Carotid Bifurcation with Stenosis
    Lee, Sang-Wook
    Lee, Seung
    Fischer, Paul F.
    Loth, Francis
    IFOST 2008: PROCEEDING OF THE THIRD INTERNATIONAL FORUM ON STRATEGIC TECHNOLOGIES, 2008, : 475 - 479
  • [7] Numerical Simulation of Intravascular Ultrasound Images Based on Patient-Specific Computed Tomography
    van Aarle, Daniek A. C.
    Fasen, Floor
    Schmeitz, Harold A. W.
    de Bruijn, Frederik J.
    van Sambeek, Marc R. H. M.
    Schwab, Hans-Martin
    Lopata, Richard G. P.
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2025, 72 (02) : 215 - 225
  • [8] Automatic Segmentation of Atherosclerotic Plaques in Transverse Carotid Ultrasound Images Using Deep Learning
    Yeo, Leonard L.
    Engin, Melih
    Lange, Robin
    Tang, David
    Nemes, Andras
    Monajemi, Sadaf
    Mohammadzadeh, Milad
    Ebrahimpour, Laleh
    Sharma, Vijay
    STROKE, 2021, 52
  • [9] A review of deep learning segmentation methods for carotid artery ultrasound images
    Huang, Qinghua
    Tian, Haozhe
    Jia, Lizhi
    Li, Ziming
    Zhou, Zishu
    NEUROCOMPUTING, 2023, 545
  • [10] Patient-Specific Study of a Stenosed Carotid Artery Bifurcation Using Fluid-Structure Interactive Simulation
    Pinho, Nelson
    Bento, Marco
    Sousa, Luisa C.
    Pinto, Sonia
    Castro, Catarina F.
    Antonio, Carlos C.
    Azevedo, Elsa
    VIPIMAGE 2017, 2018, 27 : 495 - 503