Simulation of Blood Flow Through a Patient-Specific Carotid Bifurcation Reconstructed Using Deep Learning Based Segmentation of Ultrasound Images

被引:0
|
作者
Djukic, Tijana [1 ,2 ]
Anic, Milos [2 ,3 ]
Gakovic, Branko [4 ]
Tomasevic, Smiljana [2 ,3 ]
Arsic, Branko [2 ,5 ]
Koncar, Igor [4 ]
Filipovic, Nenad [2 ,3 ]
机构
[1] Univ Kragujevac, Inst Informat Technol, Jovana Cvijica bb, Kragujevac 34000, Serbia
[2] Bioengn Res & Dev Ctr BioIRC, Prvoslava Stojanovica 6, Kragujevac 34000, Serbia
[3] Univ Kragujevac, Fac Engn, Sestre Janjica 6, Kragujevac 34000, Serbia
[4] Serbian Clin Ctr, Clin Vasc & Endovasc Surg, Dr Koste Todorovica 8, Belgrade 11000, Serbia
[5] Univ Kragujevac, Fac Sci, Radoja Domanovica 12, Kragujevac 34000, Serbia
关键词
deep learning; image segmentation; 3D reconstruction; finite element method; unsteady blood flow;
D O I
10.1007/978-3-031-60840-7_25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the diseases of the cardiovascular system is the formation of carotid artery stenosis. The existence of atherosclerotic plaque within the vessel wall causes changes in blood flow and can have serious consequences to the individual's health condition. Therefore early and appropriate clinical diagnostics is very important. One of the first clinical examinations for this disease is the ultrasound (US) examination. Three-dimensional (3D) reconstruction and blood flow simulation could be used to overcome some of the drawbacks of the US examination and improve the overall diagnostics. An approach that combines the deep learning techniques and 3D reconstruction and meshing algorithms is applied within this study to first create the model of patient-specific carotid bifurcation and then to perform unsteady blood flow simulation, with realistic boundary conditions. This type of simulations can provide quantitative hemodynamic data to the clinicians during US examination and can further help to improve the diagnostics and ensure a treatment that is more adapted to the particular patient.
引用
收藏
页码:201 / 206
页数:6
相关论文
共 50 条
  • [21] Zonal segmentation in transrectal ultrasound images of the prostate through deep learning
    van Sloun, R. J. G.
    Wildeboer, R. R.
    Postema, A. W.
    Mannaerts, C. K.
    Gayet, M.
    Wijkstra, H.
    Mischi, M.
    2018 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2018,
  • [22] Blood Cell Images Segmentation using Deep Learning Semantic Segmentation
    Thanh Tran
    Kwon, Oh-Heum
    Kwon, Ki-Ryong
    Lee, Suk-Hwan
    Kang, Kyung-Won
    2018 IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION ENGINEERING (ICECE 2018), 2018, : 13 - 16
  • [23] Arrhythmia Detection Based on Patient-Specific Normal ECGs Using Deep Learning
    Hori, Shota
    Shono, Toru
    Gyohten, Keiji
    Ohki, Hidehiro
    Takami, Toshiya
    Sato, Noboru
    2020 COMPUTING IN CARDIOLOGY, 2020,
  • [24] Numerical study on the hemodynamics of patient-specific carotid bifurcation using a new mesh approach
    Pinto, S. I. S.
    Campos, J. B. L. M.
    Azevedo, E.
    Castro, C. F.
    Sousa, L. C.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2018, 34 (06)
  • [25] Blood flow simulations in patient-specific geometries of the carotid artery: A systematic review
    Lopes, D.
    Puga, H.
    Teixeira, J.
    Lima, R.
    JOURNAL OF BIOMECHANICS, 2020, 111 (111)
  • [26] The Hemodynamic Comparison of Different Carotid Artery Bifurcation Angles Based on Patient-Specific Models
    Mei, Yuqian
    Mueller-Eschner, Matthias
    Chen, Duanduan
    LIFE SYSTEM MODELING AND SIMULATION, 2014, 461 : 170 - 177
  • [27] Carotid artery stenting simulation: From patient-specific images to finite element analysis
    Auricchio, F.
    Conti, M.
    De Beule, M.
    De Santis, G.
    Verhegghe, B.
    MEDICAL ENGINEERING & PHYSICS, 2011, 33 (03) : 281 - 289
  • [28] Computational Simulation of Carotid Artery: From Patient-Specific Images to Finite Element Analysis
    Djorovic, S.
    Saveljic, I
    Filipovic, N.
    JOURNAL OF THE SERBIAN SOCIETY FOR COMPUTATIONAL MECHANICS, 2019, 13 (01) : 120 - 129
  • [29] Deep Learning Based Patient-Specific Auto-Segmentation of Target and Organs at Risk On Daily Fan-Beam CT Images
    Han, B.
    Chen, Y.
    Butler, S.
    Yu, L.
    Zhou, Y.
    Shen, L.
    Kovalchuk, N.
    Bagshaw, H.
    Gensheimer, M.
    Xing, L.
    MEDICAL PHYSICS, 2022, 49 (06) : E792 - E792
  • [30] Patient-specific model-based segmentation of brain tumors in 3D intraoperative ultrasound images
    Elisee Ilunga-Mbuyamba
    Juan Gabriel Avina-Cervantes
    Dirk Lindner
    Felix Arlt
    Jean Fulbert Ituna-Yudonago
    Claire Chalopin
    International Journal of Computer Assisted Radiology and Surgery, 2018, 13 : 331 - 342