Clinical-imaging metrics for the diagnosis of prostate cancer in PI-RADS 3 lesions

被引:0
|
作者
Kang, Zhen [1 ,6 ]
Margolis, Daniel J. [2 ]
Tian, Ye [3 ]
Li, Qiubai [4 ]
Wang, Shaogang [5 ]
Wang, Liang [6 ]
机构
[1] Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Radiol, Wuhan, Peoples R China
[2] New York Presbyterian, Weill Cornell Med, Dept Radiol, New York, NY USA
[3] Capital Med Univ, Affiliated Beijing Friendship Hosp, Dept Urol, Beijing, Peoples R China
[4] Univ Hosp Cleveland Med Ctr, Dept Radiol, Cleveland, OH USA
[5] Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Urol, Wuhan, Peoples R China
[6] Capital Med Univ, Beijing Friendship Hosp, Dept Radiol, Beijing, Peoples R China
关键词
Prostate cancer; Clinically significant prostate cancer; PI-RADS; 3; Coefficient of variation; Apparent diffusion coefficient; APPARENT DIFFUSION-COEFFICIENT; DENSITY; GRADE; MRI;
D O I
10.1016/j.urolonc.2024.06.014
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Objective: To explore the feasibility and efficacy of clinical-imaging metrics in the diagnosis of prostate cancer (PCa) and clinically significant prostate cancer (csPCa) in prostate imaging-reporting and data system (PI-RADS) category 3 lesions. Methods: A retrospective analysis was conducted on lesions diagnosed as PI-RADS 3. They were categorized into benign, non-csPCa and csPCa groups. Apparent diffusion coefficient (ADC), T2-weighted imaging signal intensity (T2WISI), coefficient of variation of ADC and T2WISI, prostate-specific antigen density (PSAD), ADC density (ADCD), prostate-specific antigen lesion volume density (PSAVD) and ADC lesion volume density (ADCVD) were measured and calculated. Univariate and multivariate analyses were used to identify risk factors associated with PCa and csPCa. Receiver operating characteristic curve (ROC) and decision curves were utilized to assess the efficacy and net benefit of independent risk factors. Results: Among 202 patients, 133 had benign prostate disease, 25 non-csPCa and 44 csPCa. Age, PSA and lesion location showed no significant differences (P> 0.05) among the groups. T2WISI and coefficient of variation of ADC (ADCcv) were independent risk factors for PCa in PI-RADS 3 lesions, yielding an area under the curve (AUC) of 0.68. ADC was an independent risk factor for csPCa in PI-RADS 3 lesions, yielding an AUC of 0.65. Decision curve analysis showed net benefit for patients at certain probability thresholds. Conclusions: T2WISI and ADCcv, along with ADC, respectively showed considerable promise in enhancing the diagnosis of PCa and csPCa in PI-RADS 3lesions.
引用
收藏
页码:371e1 / 371e10
页数:10
相关论文
共 50 条
  • [1] Clinical Utility of Prostate Health Index for Diagnosis of Prostate Cancer in Patients with PI-RADS 3 Lesions
    Lee, Chung-Un
    Lee, Sang-Min
    Chung, Jae-Hoon
    Kang, Minyong
    Sung, Hyun-Hwan
    Jeon, Hwang-Gyun
    Jeong, Byong-Chang
    Seo, Seong-Il
    Jeon, Seong-Soo
    Lee, Hyun-Moo
    Song, Wan
    CANCERS, 2022, 14 (17)
  • [2] Follow-up MR imaging of PI-RADS 3 and PI-RADS 4 prostate lesions
    Hauth, Elke
    Jaeger, Horst
    Hohmuth, Horst
    Beer, Meinrad
    CLINICAL IMAGING, 2017, 43 : 64 - 68
  • [3] EVALUATION OF PI-RADS SCORE ≤3 LESIONS AT MULTIPARAMETRIC MRI. IMPLICATION FOR CLINICAL MANAGEMENT AND PROSTATE CANCER DIAGNOSIS
    Di Trapani, Ettore
    Catellani, Michele
    Russo, Andrea
    Conti, Andrea
    Mistretta, Francesco Alessandro
    Ferro, Matteo
    Bianco, Raffaele
    Cioffi, Antonello
    Musi, Gennaro
    Renne, Giuseppe
    Matei, Deliu Victor
    De Cobelli, Ottavio
    ANTICANCER RESEARCH, 2018, 38 (04) : 2535 - 2535
  • [4] Considering Predictive Factors in the Diagnosis of Clinically Significant Prostate Cancer in Patients with PI-RADS 3 Lesions
    Natale, Caleb
    Koller, Christopher R.
    Greenberg, Jacob W.
    Pincus, Joshua
    Krane, Louis S.
    LIFE-BASEL, 2021, 11 (12):
  • [5] Machine Learning and Clinical-Radiological Characteristics for the Classification of Prostate Cancer in PI-RADS 3 Lesions
    Gravina, Michela
    Spirito, Lorenzo
    Celentano, Giuseppe
    Capece, Marco
    Creta, Massimiliano
    Califano, Gianluigi
    Ruvolo, Claudia Colla
    Morra, Simone
    Imbriaco, Massimo
    Di Bello, Francesco
    Sciuto, Antonio
    Cuocolo, Renato
    Napolitano, Luigi
    La Rocca, Roberto
    Mirone, Vincenzo
    Sansone, Carlo
    Longo, Nicola
    DIAGNOSTICS, 2022, 12 (07)
  • [6] PI-RADS 3 Lesions: Role of Prostate MRI Texture Analysis in the Identification of Prostate Cancer
    Giambelluca, Dario
    Cannella, Roberto
    Vernuccio, Federica
    Comelli, Albert
    Pavone, Alice
    Salvaggio, Leonardo
    Galia, Massimo
    Midiri, Massimo
    Lagalla, Roberto
    Salvaggio, Giuseppe
    CURRENT PROBLEMS IN DIAGNOSTIC RADIOLOGY, 2021, 50 (02) : 175 - 185
  • [7] Clinical -Prostate cancer Histomorphological analysis of false positive PI-RADS 4 and 5 lesions
    Hupe, Marie Christine
    Offermann, Anne
    Tharun, Lars
    Fuerschke, Alexander
    Frydrychowicz, Alex
    Garstka, Nathalie
    Shariat, Shahrokh F.
    Barkhausen, Joerg
    Merseburger, Axel S.
    Kramer, Mario W.
    Perner, Sven
    UROLOGIC ONCOLOGY-SEMINARS AND ORIGINAL INVESTIGATIONS, 2020, 38 (07)
  • [8] Molecular and diffusion features for identification of clinically significant prostate cancer in PI-RADS 3 lesions
    Ajami, Tarek
    Han, Sunwoo
    Porto, Joao G.
    Kimbel, Isabella
    Szczotka, Zoe
    Guerard, Timothy
    VanderVeer-Harris, Nathan
    Ledesma, Braian R.
    Acosta, Patricia Castillo
    Kryvenko, Oleksandr N.
    Parekh, Dipen J.
    Stoyanova, Radka
    Reis, Isildinha M.
    Punnen, Sanoj
    UROLOGIC ONCOLOGY-SEMINARS AND ORIGINAL INVESTIGATIONS, 2024, 42 (11) : 370e9 - 370e14
  • [9] Predictors of prostate cancer cetection in MRI PI-RADS 3 lesions - Reality of a terciary center
    Araujo, Debora
    Gromicho, Alexandre
    Dias, Jorge
    Bastos, Samuel
    Maciel, Rui Miguel
    Sabenca, Ana
    Xambre, Luis
    ARCHIVIO ITALIANO DI UROLOGIA E ANDROLOGIA, 2023, 95 (04) : 11830
  • [10] PI-RADS: multiparametric MRI in prostate cancer
    Aileen O’Shea
    Mukesh Harisinghani
    Magnetic Resonance Materials in Physics, Biology and Medicine, 2022, 35 : 523 - 532