A privacy-preserving federated graph learning framework for threat detection in IoT trigger-action programming

被引:1
|
作者
Xing, Yongheng [1 ]
Hu, Liang [1 ]
Du, Xinqi [2 ]
Shen, Zhiqi [3 ,4 ]
Hu, Juncheng [1 ]
Wang, Feng [1 ]
机构
[1] Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Peoples R China
[2] Dalian Univ Technol, Sch Control Sci & Engn, Dalian 116081, Peoples R China
[3] Nanyang Technol Univ, Joint NTU UBC Res Ctr Excellence Act Living Elderl, Singapore 639798, Singapore
[4] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
关键词
Trigger-action programming; Rule threat detection; Privacy protection; Federated learning; Graph attention network;
D O I
10.1016/j.eswa.2024.124724
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Trigger-Action Programming (TAP) is a common user-programming paradigm in Internet of Things (IoT) smart home platforms, allowing users to create customized automation rules to match IoT devices and network services. However, the potential security threats associated with TAP rules are often overlooked or underestimated by users. To address this issue, we propose PFTAP, a novel federated graph learning framework for threat detection of TAP rules while simultaneously protecting user data and privacy. First, we propose a hierarchical graph attention network. This network comprises intra-rule attention and inter-rule attention modules, which enable the learning of comprehensive feature representations for triggers and actions. By capturing the intricate relationships between different rules, the network enhances the detection accuracy of risky TAP rules. Moreover, our framework is based on federated learning and integrates symmetric encryption and local differential privacy techniques, aiming to safeguard user privacy from unauthorized access or tampering. To evaluate the effectiveness of our framework, we conduct experiments using an extensive dataset of IFTTT rules. The experimental results convincingly demonstrate that PFTAP outperforms state-of-the-art methods in terms of threat detection performance.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] A Recommendation System for Trigger-Action Programming Rules via Graph Contrastive Learning
    Kuang, Zhejun
    Xiong, Xingbo
    Wu, Gang
    Wang, Feng
    Zhao, Jian
    Sun, Dawen
    SENSORS, 2024, 24 (18)
  • [42] Privacy-Preserving Personalized Federated Learning
    Hu, Rui
    Guo, Yuanxiong
    Li, Hongning
    Pei, Qingqi
    Gong, Yanmin
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [43] Frameworks for Privacy-Preserving Federated Learning
    Phong, Le Trieu
    Phuong, Tran Thi
    Wang, Lihua
    Ozawa, Seiichi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2024, E107D (01) : 2 - 12
  • [44] Adaptive privacy-preserving federated learning
    Liu, Xiaoyuan
    Li, Hongwei
    Xu, Guowen
    Lu, Rongxing
    He, Miao
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2020, 13 (06) : 2356 - 2366
  • [45] Privacy-preserving Techniques in Federated Learning
    Liu Y.-X.
    Chen H.
    Liu Y.-H.
    Li C.-P.
    Ruan Jian Xue Bao/Journal of Software, 2022, 33 (03): : 1057 - 1092
  • [46] Adaptive privacy-preserving federated learning
    Xiaoyuan Liu
    Hongwei Li
    Guowen Xu
    Rongxing Lu
    Miao He
    Peer-to-Peer Networking and Applications, 2020, 13 : 2356 - 2366
  • [47] Federated learning for privacy-preserving AI
    Cheng, Yong
    Liu, Yang
    Chen, Tianjian
    Yang, Qiang
    COMMUNICATIONS OF THE ACM, 2020, 63 (12) : 33 - 36
  • [48] Privacy-Preserving and Reliable Federated Learning
    Lu, Yi
    Zhang, Lei
    Wang, Lulu
    Gao, Yuanyuan
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2021, PT III, 2022, 13157 : 346 - 361
  • [49] Privacy-preserving Cross-domain Recommendation with Federated Graph Learning
    Tian, Changxin
    Xie, Yuexiang
    Chen, Xu
    Li, Yaliang
    Zhao, Xin
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 42 (05)
  • [50] FedGKD: Federated Graph Knowledge Distillation for privacy-preserving rumor detection
    Zheng, Peng
    Dou, Yong
    Yan, Yeqing
    KNOWLEDGE-BASED SYSTEMS, 2024, 304