A generalized Schrödinger-Debye coupled system

被引:0
|
作者
Nogueira, Marcelo [1 ]
Simsen, Jacson [1 ]
机构
[1] Univ Fed Itajuba, IMC, BR-37500903 Itajuba, MG, Brazil
关键词
Schr & ouml; dinger-Debye system; global solutions; inclusion coupled system; multivalued fixed point theorem; EXISTENCE;
D O I
10.1007/s41808-024-00299-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of global solutions for a generalized Schr & ouml;dinger-Debye coupled system of inclusions. Also, it was necessary to provide results about equicontinuity and compactness for the solutions associated to the Schr & ouml;dinger equation.
引用
收藏
页码:1217 / 1234
页数:18
相关论文
共 50 条
  • [21] Standing waves for a coupled system of nonlinear Schrödinger equations
    Zhijie Chen
    Wenming Zou
    Annali di Matematica Pura ed Applicata (1923 -), 2015, 194 : 183 - 220
  • [22] Convergence of a numerical scheme for a coupled Schrödinger–KdV system
    Paulo Amorim
    Mário Figueira
    Revista Matemática Complutense, 2013, 26 : 409 - 426
  • [23] Scattering threshold for the focusing coupled Schrödinger system revisited
    Tarek Saanouni
    Nonlinear Differential Equations and Applications NoDEA, 2021, 28
  • [24] Ground states for a coupled Schrödinger system with general nonlinearities
    Xueliang Duan
    Gongming Wei
    Haitao Yang
    Boundary Value Problems, 2020
  • [25] Dynamical character for a perturbed coupled nonlinear Schrödinger system
    Yu Pei
    Gao Ping
    Guo Bo-ling
    Applied Mathematics and Mechanics, 2005, 26 (7) : 823 - 829
  • [26] DYNAMICAL CHARACTER FOR A PERTURBED COUPLED NONLINEAR SCHRDINGER SYSTEM
    余沛
    高平
    郭柏灵
    AppliedMathematicsandMechanics(EnglishEdition), 2005, (07) : 823 - 829
  • [27] Quantum confinement detection using a coupled Schrödinger system
    Li, Chun
    NONLINEAR DYNAMICS, 2024, 112 (04) : 2821 - 2835
  • [28] Periodic solitons of generalized coupled nonlinear Schrödinger equations with variable coefficients
    Yang, W.
    Cheng, X. P.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (04):
  • [29] On coupled nonlinear Schrödinger systems
    T. Saanouni
    Arabian Journal of Mathematics, 2019, 8 : 133 - 151
  • [30] Partial symmetry of normalized solutions for a doubly coupled Schrödinger system
    Luo, Haijun
    Zhang, Zhitao
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 1 (05):