A Study on Performance Enhancement by Integrating Neural Topic Attention with Transformer-Based Language Model

被引:1
|
作者
Um, Taehum [1 ]
Kim, Namhyoung [1 ]
机构
[1] Gachon Univ, Dept Appl Stat, 1342 Seongnam Daero, Seongnam 13120, South Korea
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 17期
基金
新加坡国家研究基金会;
关键词
natural language processing; neural topic model; ELECTRA; ALBERT; multi-classification;
D O I
10.3390/app14177898
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As an extension of the transformer architecture, the BERT model has introduced a new paradigm for natural language processing, achieving impressive results in various downstream tasks. However, high-performance BERT-based models-such as ELECTRA, ALBERT, and RoBERTa-suffer from limitations such as poor continuous learning capability and insufficient understanding of domain-specific documents. To address these issues, we propose the use of an attention mechanism to combine BERT-based models with neural topic models. Unlike traditional stochastic topic modeling, neural topic modeling employs artificial neural networks to learn topic representations. Furthermore, neural topic models can be integrated with other neural models and trained to identify latent variables in documents, thereby enabling BERT-based models to sufficiently comprehend the contexts of specific fields. We conducted experiments on three datasets-Movie Review Dataset (MRD), 20Newsgroups, and YELP-to evaluate our model's performance. Compared to the vanilla model, the proposed model achieved an accuracy improvement of 1-2% for the ALBERT model in multiclassification tasks across all three datasets, while the ELECTRA model showed an accuracy improvement of less than 1%.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Transformer-based Natural Language Understanding and Generation
    Zhang, Feng
    An, Gaoyun
    Ruan, Qiuqi
    2022 16TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP2022), VOL 1, 2022, : 281 - 284
  • [32] Transformer-based attention network for stock movement prediction
    Zhang, Qiuyue
    Qin, Chao
    Zhang, Yunfeng
    Bao, Fangxun
    Zhang, Caiming
    Liu, Peide
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 202
  • [33] A Transformer-based Neural Architecture Search Method
    Wang, Shang
    Tang, Huanrong
    Ouyang, Jianquan
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 691 - 694
  • [34] A transformer-based neural ODE for dense prediction
    Seyedalireza Khoshsirat
    Chandra Kambhamettu
    Machine Vision and Applications, 2023, 34
  • [35] BERTAC: Enhancing Transformer-based Language Models with Adversarially Pretrained Convolutional Neural Networks
    Oh, Jong-Hoon
    Iida, Ryu
    Kloetzer, Julien
    Torisawa, Kentaro
    59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 1 (ACL-IJCNLP 2021), 2021, : 2103 - 2115
  • [36] A transformer-based neural ODE for dense prediction
    Khoshsirat, Seyedalireza
    Kambhamettu, Chandra
    MACHINE VISION AND APPLICATIONS, 2023, 34 (06)
  • [37] A Novel Transformer-Based Attention Network for Image Dehazing
    Gao, Guanlei
    Cao, Jie
    Bao, Chun
    Hao, Qun
    Ma, Aoqi
    Li, Gang
    SENSORS, 2022, 22 (09)
  • [38] Privacy Protection in Transformer-based Neural Network
    Lang, Jiaqi
    Li, Linjing
    Chen, Weiyun
    Zeng, Daniel
    2019 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENCE AND SECURITY INFORMATICS (ISI), 2019, : 182 - 184
  • [39] Transformer-based Neural Network for Electrocardiogram Classification
    Atiea, Mohammed A.
    Adel, Mark
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (11) : 357 - 363
  • [40] Transformer-based Neural Network for Electrocardiogram Classification
    Computer Science Department, Faculty of Computers and Information, Suez University, Suez, Egypt
    Intl. J. Adv. Comput. Sci. Appl., 11 (357-363): : 357 - 363