Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Simplified Electrochemical Model and TSO-TCN

被引:0
|
作者
Lin, Chen [1 ]
Yang, Dongjiang [2 ]
Zhou, Zhongkai [1 ]
机构
[1] Qingdao Univ, Shandong Key Lab Ind Control Technol, Qingdao 266071, Peoples R China
[2] Shandong New Energy Shipbldg Co Ltd, Green Intelligent Ship Ctr, Jining 272000, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion batteries - Prediction models;
D O I
10.1149/1945-7111/ad728f
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Accurate prediction of the remaining useful life (RUL) of lithium-ion battery is critical in practical applications, but is challenging due to the presence of multiple aging pathways and nonlinear degradation mechanisms. In this paper, a method for RUL prediction is proposed combined with battery capacity aging mechanism based on transient search optimization (TSO)-temporal convolutional network (TCN) algorithm. First, the particle swarm optimization algorithm is used to derive three health indicators directly related to capacity loss from a simplified electrochemical model. Then, the TCN parameters are optimized with transient search algorithm to obtain the optimal prediction model. Finally, the RUL prediction are compared with other typical algorithms, and the results show that the proposed method can accurately predict the RUL of lithium-ion battery, and the life prediction error is within 10 cycles. Compared to TCN, the prediction results remain accurate even with less training data, and the error metrics are reduced by about 50% with the maximum error only 7 cycles from the 250th charge/discharge cycle.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] Remaining useful life prediction for lithium-ion batteries in later period based on a fusion model
    Cai, Li
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2023, 45 (02) : 302 - 315
  • [12] A data-driven prediction model for the remaining useful life prediction of lithium-ion batteries
    Feng, Juqiang
    Cai, Feng
    Li, Huachen
    Huang, Kaifeng
    Yin, Hao
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 180 : 601 - 615
  • [13] Transformer Network for Remaining Useful Life Prediction of Lithium-Ion Batteries
    Chen, Daoquan
    Hong, Weicong
    Zhou, Xiuze
    IEEE ACCESS, 2022, 10 : 19621 - 19628
  • [14] Early Prediction of Remaining Useful Life for Lithium-Ion Batteries with the State Space Model
    Liang, Yuqi
    Zhao, Shuai
    ENERGIES, 2024, 17 (24)
  • [15] Remaining useful life prediction of Lithium-ion batteries of stratospheric airship by model-based method
    Du Xiaowei
    Xu Guoning
    Li Zhaojie
    Miao Ying
    Zhao Shuai
    Du Hao
    MICROELECTRONICS RELIABILITY, 2019, 100
  • [16] Lithium-ion batteries remaining useful life prediction based on BLS-RVM
    Chen, Zewang
    Shi, Na
    Ji, Yufan
    Niu, Mu
    Wang, Youren
    ENERGY, 2021, 234
  • [17] Prediction of remaining useful life of lithium-ion batteries based on PCA-GPR
    He B.
    Yang X.
    Wang J.
    Zhu X.
    Hu Z.
    Liu Q.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2022, 43 (05): : 484 - 491
  • [18] Lithium-ion batteries remaining useful life prediction based on BLS-RVM
    Chen, Zewang
    Shi, Na
    Ji, Yufan
    Niu, Mu
    Wang, Youren
    Energy, 2021, 234
  • [19] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on the Partial Voltage and Temperature
    Yang, Yanru
    Wen, Jie
    Liang, Jianyu
    Shi, Yuanhao
    Tian, Yukai
    Wang, Jiang
    SUSTAINABILITY, 2023, 15 (02)
  • [20] Remaining useful life prediction for lithium-ion batteries based on an integrated health indicator
    Sun, Yongquan
    Hao, Xueling
    Pecht, Michael
    Zhou, Yapeng
    MICROELECTRONICS RELIABILITY, 2018, 88-90 : 1189 - 1194