Fault Diagnosis of Wind Turbine Rolling Bearings Based on DCS-EEMD-SSA

被引:0
|
作者
Zhu, Jing [1 ]
Li, Ou [1 ]
Chen, Minghui [1 ]
Miao, Lifeng [1 ]
机构
[1] Henan Univ Sci & Technol, Sch Vehicle & Transportat, Luoyang 471000, Peoples R China
关键词
Ensemble empirical mode decomposition; Singular spectrum analysis; Fault diagnosis; Variance contribution ratio; Correlation coefficients; Permutation entropy; EMPIRICAL MODE DECOMPOSITION; SPECTRUM;
D O I
10.1007/s11668-024-02016-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Addressing the challenges of non-stationarity, nonlinearity, and noise interference in vibration signals of wind turbine rolling bearings, this paper proposes a fault diagnosis method combining differentiated creative search (DCS), ensemble empirical mode decomposition (EEMD), and singular spectrum analysis (SSA)-termed as DCS-EEMD-SSA. Initially, the DCS algorithm adaptively selects parameters for EEMD to decompose the fault signals. The decomposed signals are then filtered and reconstructed based on criteria such as variance contribution ratio, correlation coefficients, and permutation entropy. Subsequently, DCS adaptively selects parameters for SSA to further decompose the reconstructed signals into multiple subsequences. By analyzing the w-correlation graphs, signals of the same cycle are merged. The merged signals undergo envelope spectrum analysis, based on the highest variance contribution ratio, to diagnose faults in the wind turbine rolling bearings. The effectiveness of the proposed method is demonstrated through analysis of a publicly available rolling bearing dataset from Case Western Reserve University, showing its capability in accurately diagnosing faults in wind turbine rolling bearings.
引用
收藏
页码:2495 / 2508
页数:14
相关论文
共 50 条
  • [31] Fault diagnosis of wind turbine bearings based on morphological fractal and extreme learning machine
    Qi, Yongsheng
    Fan, Ji
    Liu, Liqiang
    Gao, Xuejin
    Li, Yongting
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2020, 41 (06): : 102 - 112
  • [32] Fault Diagnosis of Rolling Bearings Based on EWT and KDEC
    Ge, Mingtao
    Wang, Jie
    Ren, Xiangyang
    ENTROPY, 2017, 19 (12):
  • [33] Fault diagnosis of rolling bearings based on acoustic signals
    Chen J.
    Xu T.
    Huang Z.
    Sun T.
    Li X.
    Ji L.
    Yang H.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2023, 42 (21): : 237 - 244
  • [34] Fault diagnosis of rolling bearings based on IRCMNDE and NNCHC
    Yang X.
    Deng W.
    Ma J.
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2022, 37 (06): : 1150 - 1161
  • [35] Fault diagnosis of rolling bearings based on ISSA - SVM
    Li X.
    Jin W.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2023, 42 (06): : 106 - 114
  • [36] A Review of Research on Wind Turbine Bearings' Failure Analysis and Fault Diagnosis
    Peng, Han
    Zhang, Hai
    Fan, Yisa
    Shangguan, Linjian
    Yang, Yang
    LUBRICANTS, 2023, 11 (01)
  • [37] A Fault Diagnosis Model Based on Convolution Neural Network for Wind Turbine Rolling Bearing
    Yang, Zhiling
    Ma, Xiaoshan
    Ma, Yuanchi
    2018 4TH INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND MATERIAL APPLICATION, 2019, 252
  • [38] Fault diagnosis of rolling bearing of wind turbine generator based on PSO-SEBD
    Wang P.
    Deng A.
    Ling F.
    Deng M.
    Liu Y.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2023, 42 (07): : 281 - 288
  • [39] EEMD Method and TWSVM for Fault Diagnosis of Roller Bearings
    Guo Xiaoxuan
    Guo Xiaoxuan
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MANAGEMENT, COMPUTER AND EDUCATION INFORMATIZATION, 2015, 25 : 102 - 106
  • [40] Rolling bearing fault diagnosis based on EEMD sample entropy and PNN
    Liu, Xiuli
    Zhang, Xueying
    Luan, Zhongquan
    Xu, Xiaoli
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (23): : 8696 - 8700