Quantum model regression for generating fuzzy numbers in adiabatic quantum computing

被引:0
|
作者
Anjaria, Kushal [1 ]
机构
[1] Inst Rural Management Anand IRMA, Anand, India
关键词
Adiabatic quantum computing; Triangular fuzzy number; Trapezoidal fuzzy number; Cumulative distribution function; Probability;
D O I
10.1016/j.ins.2024.121018
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper addresses the problem of inherent fuzziness in real -world data, arising from uncertainties, complexities, and limitations of traditional statistical methods. We introduce a pioneering method leveraging Adiabatic Quantum Computing (AQC), based on an adiabatic quantum regression model, to generate fuzzy numbers-ideal tools owing to their extension of real numbers and robust arithmetic properties. This innovative approach overcomes challenges in Quantum Machine Learning (QML) and limitations of Noisy Intermediate -Scale Quantum (NISQ) computers, providing a solution superior to conventional statistical methods and addressing the crucial issue of exponential power increase. Unique to this work, we offer rare closed -form expressions to produce fuzzy numbers through AQC and emphasise the integration of random variables and fuzzy numbers to encapsulate uncertainty fully. We propose a novel transformation of the Cumulative Distribution Function (CDF) into triangular and trapezoidal fuzzy numbers using AQC, enabling a comprehensive description of probability distributions of random variables. Experimental results are detailed, demonstrating the significant applicability and breakthroughs of this research in addressing data fuzziness.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] (Hybrid) baryons: Quantum numbers and adiabatic potentials
    Page, PR
    QUARK CONFINEMENT AND THE HADRON SPECTRUM III, 2000, 8 : 291 - 294
  • [22] Generating Student Interest in Quantum Computing
    Uhlig, Ronald P.
    Dey, Pradip Peter
    Jawad, Shatha
    Sinha, Bhaskar Raj
    Amin, Mohammad
    2019 IEEE FRONTIERS IN EDUCATION CONFERENCE (FIE 2019), 2019,
  • [23] Improving the Variational Quantum Eigensolver Using Variational Adiabatic Quantum Computing
    Harwood, Stuart M.
    Trenev, Dimitar
    Stober, Spencer T.
    Barkoutsos, Panagiotis
    Gujarati, Tanvi P.
    Mostame, Sarah
    Greenberg, Donny
    ACM TRANSACTIONS ON QUANTUM COMPUTING, 2022, 3 (01):
  • [24] Quantum Algorithms for Systems of Linear Equations Inspired by Adiabatic Quantum Computing
    Subasi, Yigit
    Somma, Rolando D.
    Orsucci, Davide
    PHYSICAL REVIEW LETTERS, 2019, 122 (06)
  • [25] Gravity Data Inversion by Adiabatic Quantum Computing
    Moreau, Giuliana Siddi
    Pisani, Lorenzo
    Mameli, Andrea
    Podda, Carlo
    Cao, Giacomo
    Prati, Enrico
    ADVANCED QUANTUM TECHNOLOGIES, 2024, 7 (01)
  • [26] On the practicality of adiabatic quantum computing with optical schemes
    Goswami, Debabrata
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2007, 5 (1-2) : 179 - 188
  • [27] Shortcuts to Adiabaticity in Digitized Adiabatic Quantum Computing
    Hegade, Narendra N.
    Paul, Koushik
    Ding, Yongcheng
    Sanz, Mikel
    Albarran-Arriagada, F.
    Solano, Enrique
    Chen, Xi
    PHYSICAL REVIEW APPLIED, 2021, 15 (02):
  • [28] Adiabatic quantum computing for random satisfiability problems
    Hogg, T
    PHYSICAL REVIEW A, 2003, 67 (02)
  • [29] Adiabatic Quantum Computing for Multi Object Tracking
    Zaech, Jan-Nico
    Liniger, Alexander
    Danelljan, Martin
    Dai, Dengxin
    Gool, Luc Van
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 8801 - 8812
  • [30] Digitized adiabatic quantum computing with a superconducting circuit
    R. Barends
    A. Shabani
    L. Lamata
    J. Kelly
    A. Mezzacapo
    U. Las Heras
    R. Babbush
    A. G. Fowler
    B. Campbell
    Yu Chen
    Z. Chen
    B. Chiaro
    A. Dunsworth
    E. Jeffrey
    E. Lucero
    A. Megrant
    J. Y. Mutus
    M. Neeley
    C. Neill
    P. J. J. O’Malley
    C. Quintana
    P. Roushan
    D. Sank
    A. Vainsencher
    J. Wenner
    T. C. White
    E. Solano
    H. Neven
    John M. Martinis
    Nature, 2016, 534 : 222 - 226