Alkali-modified biomass ash enhances the adsorption capacities of Cu2+, Cd2+, and Pb2+ and their immobilization in soil

被引:1
|
作者
Cui, Hongbiao [1 ,2 ]
Yu, Wenli [1 ,2 ]
Li, Shuai [1 ,2 ]
Zhang, Shiwen [1 ,2 ]
Hu, Shaojun [1 ,2 ]
Zhou, Jun [3 ]
机构
[1] Anhui Univ Sci & Technol, Joint Natl Local Engn Res Ctr Safe & Precise Coal, Huainan 232001, Peoples R China
[2] Anhui Univ Sci & Technol, Sch Earth & Environm, Huainan 232001, Peoples R China
[3] Chinese Acad Sci, Inst Soil Sci, Key Lab Soil Environm & Pollut Remediat, Nanjing 210008, Peoples R China
来源
关键词
Biomass ash; Heavy metals; One-step alkali modification; Adsorption; Immobilization; Chemical fraction; TOXIC METALS; FLY-ASH; REMOVAL; MECHANISM; KINETICS; CADMIUM; LEAD; DISSOLUTION; ADSORBENT; BIOCHAR;
D O I
10.1016/j.jece.2024.113490
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Biomass ash (BA) is rich in silica, aluminum, potassium, phosphorus, and other elements, and it can be used for environmental remediation. However, there is a limitation in using BA for the modification with high adsorption capacities of heavy metals (HMs) through a simple and low-cost method. In this study, modified biomass ash (MBA) was prepared through one-step single alkali (KOH) modification, and its influence on the adsorption and immobilization of HMs was investigated in water and soil. BET analysis indicated that the specific surface area of MBA was increased by 3.26 times compared to BA. Compared to BA, the Si-O-Si/Al diffraction peaks of MBA were intensified, and the intensity of sylvite and gypsum was decreased based on the FTIR and XRD analysis. The maximum adsorption capacities of Cu2+, Cd2+, and Pb2+ for MBA were 2.35, 1.64, and 0.30 times higher than those of BA, respectively. XPS, FTIR, and XRD analysis showed that MBA adsorbed the HMs through physical adsorption, surface complexation, ion exchange, and precipitation. The application of 0.1-0.6 % MBA increased soil pH by 0.07-0.56 units compared to BA. MBA significantly decreased the exchangeable HMs concentrations, and converted them into stable fractions. This study provided a novel amendment with high adsorption capacities and immobilization effects for HMs, which can be utilized for remediating the contaminated soils.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] The effect of Ca-bearing contents in chitosan on Pb2+, Cd2+ and Cu2+ adsorption and its adsorption mechanism
    Alam, Ohidul
    Qiao, Xiuchen
    Nath, Tapan Kumar
    JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE AND ENGINEERING, 2020, 18 (02) : 1401 - 1414
  • [22] pH effects on the removal of Cu2+, Cd2+ and Pb2+ from aqueous solution by waste brewery biomass
    Marques P.A.S.S.
    Rosa M.F.
    Pinheiro H.M.
    Bioprocess Engineering, 2000, 23 (2) : 135 - 141
  • [23] Removal efficiency of Cu2+, Cd2+, Pb2+ by waste brewery biomass:: pH and cation association effects
    Marques, PA
    Pinheiro, HM
    Teixeira, JA
    Rosa, MF
    DESALINATION, 1999, 124 (1-3) : 137 - 144
  • [24] Preparation of esterified biomass waste hydrogels and their removal of Pb2+, Cu2+ and Cd2+ from aqueous solution
    Mingyue Zhang
    Yaru Zhou
    Xinling Yang
    Xiaochong Lu
    Xu Zhao
    Zeshao Chen
    Weidong Duan
    Junfeng Li
    Mingqin Zhao
    Quanyu Yin
    Environmental Science and Pollution Research, 2023, 30 : 56580 - 56593
  • [25] pH effects on the removal of Cu2+, Cd2+ and Pb2+ from aqueous solution by waste brewery biomass
    Marques, P.A.S.S.
    Rosa, M.F.
    Pinheiro, H.M.
    Bioprocess and Biosystems Engineering, 2000, 23 (02) : 135 - 141
  • [26] pH effects on the removal of CU2+, Cd2+ and Pb2+ from aqueous solution by waste brewery biomass
    Marques, PASS
    Rosa, MF
    Pinheiro, HM
    BIOPROCESS ENGINEERING, 2000, 23 (02): : 135 - 141
  • [27] Preparation of esterified biomass waste hydrogels and their removal of Pb2+, Cu2+ and Cd2+ from aqueous solution
    Zhang, Mingyue
    Zhou, Yaru
    Yang, Xinling
    Lu, Xiaochong
    Zhao, Xu
    Chen, Zeshao
    Duan, Weidong
    Li, Junfeng
    Zhao, Mingqin
    Yin, Quanyu
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (19) : 56580 - 56593
  • [28] Nanoporous Xerogel for Adsorption of Pb2+ and Cd2+
    Sarand, F. B.
    Hassani, S.
    Fazli, M.
    Haghbeen, K.
    JOURNAL OF NANOSTRUCTURES, 2015, 5 (03) : 209 - 218
  • [29] Adsorption of Pb2+, Cu2+ and Cd2+ in FDU-1 silica and FDU-1 silica modified with humic acid
    Cides da Silva, L. C.
    dos Santos, L. B. O.
    Abate, G.
    Cosentino, I. C.
    Fantini, M. C. A.
    Masini, J. C.
    Matos, J. R.
    MICROPOROUS AND MESOPOROUS MATERIALS, 2008, 110 (2-3) : 250 - 259
  • [30] Application of Stabilized Nano Zero Valent Iron Particles for Immobilization of Available Cd2+, Cu2+, Ni2+, and Pb2+ Ions in Soil
    Saulius Vasarevičius
    Vaidotas Danila
    Dainius Paliulis
    International Journal of Environmental Research, 2019, 13 : 465 - 474