MISAO: A Multi-Strategy Improved Snow Ablation Optimizer for Unmanned Aerial Vehicle Path Planning

被引:1
|
作者
Zhou, Cuiping [1 ]
Li, Shaobo [1 ,2 ]
Xie, Cankun [1 ]
Yuan, Panliang [1 ]
Long, Xiangfu [3 ]
机构
[1] Guizhou Univ, State Key Lab Publ Big Data, Guiyang 550025, Peoples R China
[2] Guizhou Inst Technol, Guiyang 550003, Peoples R China
[3] Guizhou Univ, Sch Mech Engn, Guiyang 550025, Peoples R China
关键词
snow ablation optimizer; tent chaos fusion elite reverse; multi-strategy improved snow ablation optimizer; UAV path planning; GLOBAL OPTIMIZATION; SEARCH ALGORITHM;
D O I
10.3390/math12182870
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The snow ablation optimizer (SAO) is a meta-heuristic technique used to seek the best solution for sophisticated problems. In response to the defects in the SAO algorithm, which has poor search efficiency and is prone to getting trapped in local optima, this article suggests a multi-strategy improved (MISAO) snow ablation optimizer. It is employed in the unmanned aerial vehicle (UAV) path planning issue. To begin with, the tent chaos and elite reverse learning initialization strategies are merged to extend the diversity of the population; secondly, a greedy selection method is deployed to retain superior alternative solutions for the upcoming iteration; then, the Harris hawk (HHO) strategy is introduced to enhance the exploitation capability, which prevents trapping in partial ideals; finally, the red-tailed hawk (RTH) is adopted to perform the global exploration, which, enhances global optimization capability. To comprehensively evaluate MISAO's optimization capability, a battery of digital optimization investigations is executed using 23 test functions, and the results of the comparative analysis show that the suggested algorithm has high solving accuracy and convergence velocity. Finally, the effectiveness and feasibility of the optimization path of the MISAO algorithm are demonstrated in the UAV path planning project.
引用
收藏
页数:37
相关论文
共 50 条
  • [21] Path planning of unmanned aerial vehicle based on improved gravitational search algorithm
    LI Pei DUAN HaiBin Science and Technology on Aircraft Control LaboratorySchool of Automation Science and Electrical EngineeringBeihang UniversityBeijing China State Key Laboratory of Virtual Reality Technology and SystemsBeihang UniversityBeijing China
    Science China(Technological Sciences), 2012, 55 (10) : 2712 - 2719
  • [22] A Study on Path Planning of Unmanned Aerial Vehicle Based on Improved Genetic Algorithm
    Tao, Jihua
    Zhong, Chaoliang
    Gao, Li
    Deng, Hao
    2016 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC), VOL. 2, 2016, : 392 - 395
  • [23] A novel hybrid improved dingo algorithm for unmanned aerial vehicle path planning
    Wang, Shoubin
    Lv, Xuanman
    Li, Youbing
    Jing, Lewei
    Fang, Xinchang
    Peng, Guili
    Zhou, Yuan
    Sun, Wenhao
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2025, 47 (01)
  • [24] Path planning of unmanned aerial vehicle based on improved gravitational search algorithm
    Li Pei
    Duan HaiBin
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2012, 55 (10) : 2712 - 2719
  • [25] Path planning of unmanned aerial vehicle based on improved gravitational search algorithm
    LI Pei 1 & DUAN HaiBin 1
    2 State Key Laboratory of Virtual Reality Technology and Systems
    Science China(Technological Sciences), 2012, (10) : 2712 - 2719
  • [26] Path planning of unmanned aerial vehicle based on improved gravitational search algorithm
    Pei Li
    HaiBin Duan
    Science China Technological Sciences, 2012, 55 : 2712 - 2719
  • [27] Application of Improved Cuckoo Search Algorithm to Path Planning Unmanned Aerial Vehicle
    Xie, Cong
    Zheng, Hongqing
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2016, PT I, 2016, 9771 : 722 - 729
  • [28] Improved Dung Beetle Optimizer Algorithm With Multi-Strategy for Global Optimization and UAV 3D Path Planning
    Lyu, Lixin
    Jiang, Hong
    Yang, Fan
    IEEE ACCESS, 2024, 12 : 69240 - 69257
  • [29] Hybrid Multi-Strategy Improved Wild Horse Optimizer
    Li, Yancang
    Yuan, Qiuyu
    Han, Muxuan
    Cui, Rong
    ADVANCED INTELLIGENT SYSTEMS, 2022, 4 (10)
  • [30] Heuristic path planning of unmanned aerial vehicle formations
    Hino, Takuma
    Tsuchiya, Takeshi
    INTERNATIONAL JOURNAL OF INTELLIGENT UNMANNED SYSTEMS, 2013, 1 (02) : 121 - 144