On large submodules in Hilbert C*-modules

被引:0
|
作者
Manuilov, V. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow Ctr Fundamental & Appl Math, Leninskie Gory 1, Moscow 119991, Russia
关键词
hILBER c*-module; C & lowast; -algebra; Right ideal; Submodule;
D O I
10.1016/j.jmaa.2024.128781
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider several natural ways of expressing the idea that a one-sided ideal in a C & lowast;-algebra (or a submodule in a Hilbert C & lowast;-module) is large, and show that they differ, unlike the case of two-sided ideals in C & lowast;-algebras. We then show how these different notions, for ideals and for submodules, are related. We also study some permanence properties for these notions. Finally, we use essential right ideals to extend the inner product on a Hilbert C & lowast;-module to a part of the dual module. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] On equivariant embedding of Hilbert C* modules
    Goswami, Debashish
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2009, 119 (01): : 63 - 70
  • [42] A SURVEY ON EXTENSIONS OF HILBERT C*-MODULES
    Kolarec, Biserka
    QUANTUM PROBABILITY AND RELATED TOPICS, 2013, 29 : 209 - 221
  • [43] ON ORTHOGONAL SYSTEMS IN HILBERT C*-MODULES
    Landi, Giovanni
    Pavlov, Alexander
    JOURNAL OF OPERATOR THEORY, 2012, 68 (02) : 487 - 500
  • [44] Pullback diagram of Hilbert C*-modules
    Amyari, Maryam
    Chakoshi, Mahnaz
    MATHEMATICAL COMMUNICATIONS, 2011, 16 (02) : 569 - 575
  • [45] On∗-fusion frames for Hilbert C∗-modules
    Assila, Nadia
    Kabbaj, Samir
    Zoubeir, Hicham
    ADVANCES IN OPERATOR THEORY, 2024, 9 (02)
  • [46] Geometrical aspects of Hilbert C*-modules
    Frank, M
    POSITIVITY, 1999, 3 (03) : 215 - 243
  • [47] Invertibility of Multipliers in Hilbert C*-modules
    Rashidi-Kouchi, M.
    Rahimi, A.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2020, 10 (01): : 21 - 37
  • [48] NUMERICAL RADIUS IN HILBERT C*-MODULES
    Zamani, Ali
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2021, 24 (04): : 1017 - 1030
  • [49] MORITA EQUIVALENCE OF HILBERT C*- MODULES
    Amini, Massoud
    Asadi, Mohammad B.
    Joita, Maria
    Rezavand, Reza
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 9 (01): : 102 - 110
  • [50] On equivariant embedding of Hilbert C* modules
    Debashish Goswami
    Proceedings - Mathematical Sciences, 2009, 119 : 63 - 70