A REFINEMENT OF SCHWARZ'S LEMMA AT THE BOUNDARY

被引:0
|
作者
Ornek, Bulent Nafi [1 ]
机构
[1] Amasya Univ, Dept Comp Engn, Amasya, Turkiye
关键词
INEQUALITY;
D O I
10.1007/s11253-024-02340-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a boundary version of the Schwarz lemma for analytic functions. In addition, an analytic function satisfying the equality case is found by deducing inequalities connected with the modulus of the derivative of analytic functions at a boundary point of the unit disk. In these inequalities, we consider some coefficients used in the Taylor expansion of the function. In the last theorem, by analyzing the Taylor expansion about two points, we obtain the modulus of the derivative of the function at point 1.
引用
收藏
页码:573 / 584
页数:12
相关论文
共 50 条
  • [21] THE SCHWARZ LEMMA AND ITS APPLICATION AT A BOUNDARY POINT
    Jeong, Moonja
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2014, 21 (03): : 219 - 227
  • [22] A GENERALIZATION OF SCHWARZ'S LEMMA
    庄圻泰
    Science China Mathematics, 1982, (04) : 337 - 345
  • [23] EXTENSION OF SCHWARZ'S LEMMA
    文涛
    Science Bulletin, 1983, (06) : 855 - 856
  • [24] A Boundary Schwarz Lemma for Holomorphic Mappings on the Polydisc
    Liu, Yang
    Chen, Zhihua
    Pan, Yifei
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2018, 39 (01) : 9 - 16
  • [25] A Boundary Schwarz Lemma for Holomorphic Mappings on the Polydisc
    Yang LIU
    Zhihua CHEN
    Yifei PAN
    Chinese Annals of Mathematics,Series B, 2018, (01) : 9 - 16
  • [26] THE SCHWARZ LEMMA AT THE BOUNDARY FOR THE INTERSECTION OF TWO BALLS
    Lee, Hanjin
    HONAM MATHEMATICAL JOURNAL, 2023, 45 (04): : 648 - 654
  • [27] Schwarz lemma at the boundary of the unit polydisk in ℂn
    XiaoMin Tang
    TaiShun Liu
    Jin Lu
    Science China Mathematics, 2015, 58 : 1639 - 1652
  • [28] Schwarz lemma at the boundary of the unit polydisk in Cn
    Tang XiaoMin
    Liu TaiShun
    Lu Jin
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (08) : 1639 - 1652
  • [29] Schwarz Lemma at the Boundary on the Classical Domain of Type Ⅲ
    Taishun LIU
    Xiaomin TANG
    Wenjun ZHANG
    Chinese Annals of Mathematics,Series B, 2020, (03) : 335 - 360
  • [30] An extension of Schwarz's lemma
    Ahlfors, Lars V.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1938, 43 (1-3) : 359 - 364