Deep Plasma Proteomics with Data-Independent Acquisition: Clinical Study Protocol Optimization with a COVID-19 Cohort

被引:0
|
作者
Ward, Bradley [1 ,2 ,3 ]
Ruys, Sebastien Pyr Dit [1 ,2 ,3 ]
Balligand, Jean-Luc [1 ,4 ]
Belkhir, Leila [1 ,3 ,5 ]
Cani, Patrice D. [1 ,6 ,7 ,8 ]
Collet, Jean-Francois [1 ,9 ]
De Greef, Julien [1 ,5 ]
Dewulf, Joseph P. [1 ,3 ,11 ]
Gatto, Laurent [1 ,12 ]
Haufroid, Vincent [1 ,3 ,10 ]
Jodogne, Sebastien [1 ,13 ]
Kabamba, Benoit [1 ,8 ,14 ]
Lingurski, Maxime [1 ,2 ]
Yombi, Jean Cyr [1 ,5 ]
Vertommen, Didier [1 ]
Elens, Laure [1 ,2 ,3 ]
机构
[1] Catholic Univ Louvain, Louvain Drug Res Inst LDRI, Integrated PharmacoMetr PharmacoGen & Pharmacokine, UCLouvain, B-1200 Brussels, Belgium
[2] Catholic Univ Louvain, Louvain Drug Res Inst LDRI, Integrated Pharmacometr Pharmacogen & Pharmacokine, UCLouvain, B-1200 Brussels, Belgium
[3] Catholic Univ Louvain, Inst Rech Expt & Clin IREC, Louvain Ctr Toxicol & Appl Pharmacol LTAP, UCLouvain, B-1200 Brussels, Belgium
[4] Catholic Univ Louvain, WELBIO Walloon Excellence Life Sci & Biotechnol, Pole Pharmacol & Therapeut FATH, Clin Univ St Luc,Inst Rech Experimentale & Clin IR, B-1200 Brussels, Belgium
[5] Catholic Univ Louvain, Dept Internal Med, Clin Univ St Luc, UCLouvain, B-1200 Brussels, Belgium
[6] Catholic Univ Louvain, Louvain Drug Res Inst LDRI, Metab & Nutr Res Grp, UCLouvain, B-1200 Brussels, Belgium
[7] WEL Res Inst, WELBIO Dept, WELBIO Walloon Excellence Life Sci & Biotechnol, Ave Pasteur 6, B-1300 Wavre, Belgium
[8] Catholic Univ Louvain, Inst Expt & Clin Res IREC, UCLouvain, B-1200 Brussels, Belgium
[9] Catholic Univ Louvain, Duve Inst, WELBIO Walloon Excellence Life Sci & Biotechnol, UCLouvain, B-1200 Brussels, Belgium
[10] Catholic Univ Louvain, Dept Lab Med, Clin Univ St Luc, UCLouvain, B-1200 Brussels, Belgium
[11] Catholic Univ Louvain, Duve Inst, Dept Biochem, UCLouvain, B-1200 Brussels, Belgium
[12] Catholic Univ Louvain, Duve Inst, Computat Biol & Bioinformat Unit CBIO, UCLouvain, B-1200 Brussels, Belgium
[13] Catholic Univ Louvain, Inst Informat & Commun Technol Elect & Appl Math I, Comp Sci & Engn Dept INGI, UCLouvain, B-1348 Louvain La Neuve, Belgium
[14] Catholic Univ Louvain, Inst Rech Expt & Clin, Poole Microbiol, UCLouvain, B-1200 Brussels, Belgium
关键词
plasma proteomics; fractionation; data-independentacquisition; COVID-19; DIA-NN; biomarkers; deep proteome analysis; clinical proteomics; BIOMARKER DISCOVERY;
D O I
10.1021/acs.jproteome.4c00104
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Plasma proteomics is a precious tool in human disease research but requires extensive sample preparation in order to perform in-depth analysis and biomarker discovery using traditional data-dependent acquisition (DDA). Here, we highlight the efficacy of combining moderate plasma prefractionation and data-independent acquisition (DIA) to significantly improve proteome coverage and depth while remaining cost-efficient. Using human plasma collected from a 20-patient COVID-19 cohort, our method utilizes commonly available solutions for depletion, sample preparation, and fractionation, followed by 3 liquid chromatography-mass spectrometry/MS (LC-MS/MS) injections for a 360 min total DIA run time. We detect 1321 proteins on average per patient and 2031 unique proteins across the cohort. Differential analysis further demonstrates the applicability of this method for plasma proteomic research and clinical biomarker identification, identifying hundreds of differentially abundant proteins at biological concentrations as low as 47 ng/L in human plasma. Data are available via ProteomeXchange with the identifier PXD047901. In summary, this study introduces a streamlined, cost-effective approach to deep plasma proteome analysis, expanding its utility beyond classical research environments and enabling larger-scale multiomics investigations in clinical settings. Our comparative analysis revealed that fractionation, whether the samples were pooled or separate postfractionation, significantly improved the number of proteins quantified. This underscores the value of fractionation in enhancing the depth of plasma proteome analysis, thereby offering a more comprehensive landscape for biomarker discovery in diseases such as COVID-19.
引用
收藏
页码:3806 / 3822
页数:17
相关论文
共 50 条
  • [21] Isolation Window Optimization of Data-Independent Acquisition Using Predicted Libraries for Deep and Accurate Proteome Profiling
    Doellinger, Joerg
    Blumenscheit, Christian
    Schneider, Andy
    Lasch, Peter
    ANALYTICAL CHEMISTRY, 2020, 92 (18) : 12185 - 12192
  • [22] Analysis of 1508 Plasma Samples by Capillary-Flow Data-Independent Acquisition Profiles Proteomics of Weight Loss and Maintenance
    Bruderer, Roland
    Muntel, Jan
    Muller, Sebastian
    Bernhard, Oliver M.
    Gandhi, Tejas
    Cominetti, Ornella
    Macron, Charlotte
    Carayol, Jerome
    Rinner, Oliver
    Astrup, Arne
    Saris, Wim H. M.
    Hager, Jorg
    Valsesia, Armand
    Dayon, Loic
    Reiter, Lukas
    MOLECULAR & CELLULAR PROTEOMICS, 2019, 18 (06) : 1242 - 1254
  • [23] Proteomics of exhaled breath condensate in lung cancer and controls using data-independent acquisition (DIA): a pilot study
    Ma, Lin
    Muscat, Joshua E.
    Sinha, Raghu
    Sun, Dongxiao
    Xiu, Guangli
    JOURNAL OF BREATH RESEARCH, 2021, 15 (02)
  • [24] Identification of noninvasive diagnostic biomarkers for ectopic pregnancy using data-independent acquisition (DIA)proteomics: a pilot study
    Ma, Dan
    Yang, Ruiqing
    Chen, Yunlong
    Huang, Zhengyi
    Shen, Yuxin
    He, Chengqi
    Zhao, Lixing
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [25] Identification of noninvasive diagnostic biomarkers for ectopic pregnancy using data-independent acquisition (DIA)proteomics: a pilot study
    Dan Ma
    Ruiqing Yang
    Yunlong Chen
    Zhengyi Huang
    Yuxin Shen
    Chengqi He
    Lixing Zhao
    Scientific Reports, 12
  • [26] Discovery of Potential Plasma Biomarkers for Tuberculosis in HIV-Infected Patients by Data-Independent Acquisition-Based Quantitative Proteomics
    Shen, Yinzhong
    Xun, Jingna
    Song, Wei
    Wang, Zhenyan
    Wang, Jiangrong
    Liu, Li
    Zhang, Renfang
    Qi, Tangkai
    Tang, Yang
    Chen, Jun
    Sun, Jianjun
    Lu, Hongzhou
    INFECTION AND DRUG RESISTANCE, 2020, 13 : 1185 - 1196
  • [27] Deep mutagenesis in the study of COVID-19: a technical overview for the proteomics community
    Procko, Erik
    EXPERT REVIEW OF PROTEOMICS, 2020, 17 (09) : 633 - 638
  • [28] Combining Deep Phenotyping of Serum Proteomics and Clinical Data via Machine Learning for COVID-19 Biomarker Discovery
    Beltrami, Antonio Paolo
    De Martino, Maria
    Dalla, Emiliano
    Malfatti, Matilde Clarissa
    Caponnetto, Federica
    Codrich, Marta
    Stefanizzi, Daniele
    Fabris, Martina
    Sozio, Emanuela
    D'Aurizio, Federica
    Pucillo, Carlo E. M.
    Sechi, Leonardo A.
    Tascini, Carlo
    Curcio, Francesco
    Foresti, Gian Luca
    Piciarelli, Claudio
    De Nardin, Axel
    Tell, Gianluca
    Isola, Miriam
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (16)
  • [29] A Proteomics Pipeline for Generating Clinical Grade Biomarker Candidates from Data-Independent Acquisition Mass Spectrometry (DIA-MS) Discovery
    Fu, Qin
    Vegesna, Manasa
    Sundararaman, Niveda
    Damoc, Eugen
    Arrey, Tabiwang N.
    Pashkova, Anna
    Mengesha, Emebet
    Debbas, Philip
    Joung, Sandy
    Li, Dalin
    Cheng, Susan
    Braun, Jonathan
    McGovern, Dermot P. B.
    Murray, Christopher I.
    Xuan, Yue
    Van Eyk, Jennifer E.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (52)
  • [30] A matched cohort study of convalescent plasma therapy for COVID-19
    Sostin, Oleg V.
    Rajapakse, Pramuditha
    Cruser, Brigid
    Wakefield, Dorothy
    Cruser, Daniel
    Petrini, Joann
    JOURNAL OF CLINICAL APHERESIS, 2021, 36 (04) : 523 - 532