Emerging research trends in artificial intelligence for cancer diagnostic systems: A comprehensive review

被引:3
|
作者
Abbas, Sagheer [1 ]
Asif, Muhammad [2 ]
Rehman, Abdur [3 ]
Alharbi, Meshal [4 ]
Khan, Muhammad Adnan [5 ,6 ,7 ]
Elmitwally, Nouh [8 ,9 ]
机构
[1] Prince Mohammad Bin Fahd Univ, Dept Comp Sci, Al Khobar, Saudi Arabia
[2] Educ Univ Lahore, Dept Comp Sci, Attock Campus, Lahore, Pakistan
[3] Natl Coll Business Adm & Econ, Sch Comp Sci, Lahore 54000, Pakistan
[4] Prince Sattam Bin Abdulaziz Univ, Coll Comp Engn & Sci, Dept Comp Sci, Alkharj 11942, Saudi Arabia
[5] Riphah Int Univ, Fac Comp, Riphah Sch Comp & Innovat, Lahore Campus, Lahore 54000, Pakistan
[6] Univ City Sharjah, Skyline Univ Coll, Sch Comp, Sharjah 1797, U Arab Emirates
[7] Gachon Univ, Fac Artificial Intelligence & Software, Dept Software, Seongnam 13120, South Korea
[8] Cairo Univ, Fac Comp & Artificial Intelligence, Dept Comp Sci, Giza 12613, Egypt
[9] Birmingham City Univ, Sch Comp & Digital Technol, Birmingham B4 7XG, England
关键词
Machine learning deep learning; Artificial intelligence; Cancer diagnostics; Federated learning; Explainable AI; INTRUSION DETECTION; LEARNING APPROACH; SMART CITIES; HEALTH-CARE; DEEP; CLASSIFICATION; OPTIMIZATION; NETWORKS; ELASTOGRAPHY; SIMULATION;
D O I
10.1016/j.heliyon.2024.e36743
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This review article offers a comprehensive analysis of current developments in the application of machine learning for cancer diagnostic systems. The effectiveness of machine learning approaches has become evident in improving the accuracy and speed of cancer detection, addressing the complexities of large and intricate medical datasets. This review aims to evaluate modern machine learning techniques employed in cancer diagnostics, covering various algorithms, including supervised and unsupervised learning, as well as deep learning and federated learning methodologies. Data acquisition and preprocessing methods for different types of data, such as imaging, genomics, and clinical records, are discussed. The paper also examines feature extraction and selection techniques specific to cancer diagnosis. Model training, evaluation metrics, and performance comparison methods are explored. Additionally, the review provides insights into the applications of machine learning in various cancer types and discusses challenges related to dataset limitations, model interpretability, multi-omics integration, and ethical considerations. The emerging field of explainable artificial intelligence (XAI) in cancer diagnosis is highlighted, emphasizing specific XAI techniques proposed to improve cancer diagnostics. These techniques include interactive visualization of model decisions and feature importance analysis tailored for enhanced clinical interpretation, aiming to enhance both diagnostic accuracy and transparency in medical decision-making. The paper concludes by outlining future directions, including personalized medicine, federated learning, deep learning advancements, and ethical considerations. This review aims to guide researchers, clinicians, and policymakers in the development of efficient and interpretable machine learning-based cancer diagnostic systems.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Artificial intelligence in endocrinology: a comprehensive review
    Giorgini, F.
    Di Dalmazi, G.
    Diciotti, S.
    JOURNAL OF ENDOCRINOLOGICAL INVESTIGATION, 2024, 47 (05) : 1067 - 1082
  • [22] Artificial Intelligence in Periodontics: A Comprehensive Review
    Parihar, Anuj Singh
    Narang, Sumit
    Tyagi, Sanjeev
    Narang, Anu
    Dwivedi, Shivani
    Katoch, Vartika
    Laddha, Rashmi
    JOURNAL OF PHARMACY AND BIOALLIED SCIENCES, 2024, 16 : S1956 - S1958
  • [23] Artificial intelligence in uveitis: A comprehensive review
    Nakayama, Luis F.
    Ribeiro, Lucas Z.
    Dychiao, Robyn G.
    Zamora, Yuslay F.
    Regatieri, Caio V. S.
    Celi, Leo A.
    Silva, Paolo
    Sobrin, Lucia
    Belfort Jr, Rubens
    SURVEY OF OPHTHALMOLOGY, 2023, 68 (04) : 669 - 677
  • [24] Artificial intelligence in endocrinology: a comprehensive review
    F. Giorgini
    G. Di Dalmazi
    S. Diciotti
    Journal of Endocrinological Investigation, 2024, 47 : 1067 - 1082
  • [25] Explainable artificial intelligence: a comprehensive review
    Minh, Dang
    Wang, H. Xiang
    Li, Y. Fen
    Nguyen, Tan N.
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (05) : 3503 - 3568
  • [26] Explainable artificial intelligence: a comprehensive review
    Dang Minh
    H. Xiang Wang
    Y. Fen Li
    Tan N. Nguyen
    Artificial Intelligence Review, 2022, 55 : 3503 - 3568
  • [27] Artificial Intelligence in Biomaterials: A Comprehensive Review
    Gokcekuyu, Yasemin
    Ekinci, Fatih
    Guzel, Mehmet Serdar
    Acici, Koray
    Aydin, Sahin
    Asuroglu, Tunc
    APPLIED SCIENCES-BASEL, 2024, 14 (15):
  • [28] Emerging Trends and Research Foci in Artificial Intelligence for Retinal Diseases: Bibliometric and Visualization Study
    Zhao, Junqiang
    Lu, Yi
    Qian, Yong
    Luo, Yuxin
    Yang, Weihua
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2022, 24 (06)
  • [29] Exploring the Role of Artificial Intelligence in Wastewater Treatment: A Dynamic Analysis of Emerging Research Trends
    de la Hoz-m, Javier
    Ariza-Echeverri, Edwan Anderson
    Vergara, Diego
    RESOURCES-BASEL, 2024, 13 (12):
  • [30] A Comprehensive Review of Artificial Intelligence in Prostate Cancer Care: State-of-the-Art Diagnostic Tools and Future Outlook
    Agrawal, Somya
    Vagha, Sunita
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2024, 16 (08)