Self-supervised Visual Anomaly Detection with Image Patch Generation and Comparison Networks

被引:0
|
作者
Huang, Jianfeng [1 ,2 ]
Zhao, Kaikai [1 ,2 ]
Li, Chenyang [1 ,2 ]
Lin, Yimin [1 ,2 ]
Liu, Zhaoxiang [1 ,2 ]
Wang, Kai [1 ,2 ]
Lian, Shiguo [1 ,2 ]
机构
[1] China Unicom, AI Innovat Ctr, Beijing 100013, Peoples R China
[2] China Unicom, Unicom Digital Technol, Beijing 100013, Peoples R China
关键词
Industrial anomaly detection; Self-supervised anomaly detection; Vision transformer;
D O I
10.1007/978-981-97-5609-4_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic industrial anomaly detection, especially visual anomaly detection, is still a challenging task. Taking the product of cloth for example, there are often various intrinsic textures or color patterns on cloth images which makes it difficult to distinguish anomaly and normality. To tackle this issue, we propose a novel self-supervised anomaly detection method consisting of three steps. Firstly, the Vision Transformer-based generation network is trained to learn the product image's texture and color patterns and generate an image patch from the other two adjacent patches. Then, the Siamese-based comparison network is designed to compare the generated patch with the original one to identify and localize the anomaly. Finally, the location of anomaly is refined by a bi-directional inference strategy. Experimental results on both the public dataset MVTec AD and our practical dataset demonstrate the superiority of our method over other state-of-the-art approaches.
引用
收藏
页码:96 / 113
页数:18
相关论文
共 50 条
  • [11] Anomaly Detection on Attributed Networks via Contrastive Self-Supervised Learning
    Liu, Yixin
    Li, Zhao
    Pan, Shirui
    Gong, Chen
    Zhou, Chuan
    Karypis, George
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (06) : 2378 - 2392
  • [12] Self-Supervised Anomaly Detection With Neural Transformations
    Qiu, Chen
    Kloft, Marius
    Mandt, Stephan
    Rudolph, Maja
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2025, 47 (03) : 2170 - 2185
  • [13] SELF-SUPERVISED ANOMALY DETECTION FOR NARROWBAND SETI
    Zhang, Yunfan Gerry
    Won, Ki Hyun
    Son, Seung Woo
    Siemion, Andrew
    Croft, Steve
    2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 1114 - 1118
  • [14] Self-supervised anomaly detection for new physics
    Dillon, Barry M.
    Mastandrea, Radha
    Nachman, Benjamin
    PHYSICAL REVIEW D, 2022, 106 (05)
  • [15] A self-supervised anomaly detection algorithm with interpretability
    Wu, Zhichao
    Yang, Xin
    Wei, Xiaopeng
    Yuan, Peijun
    Zhang, Yuanping
    Bai, Jianming
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [16] Anomaly Detection on Electroencephalography with Self-supervised Learning
    Xu, Junjie
    Zheng, Yaojia
    Mao, Yifan
    Wang, Ruixuan
    Zheng, Wei-Shi
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 363 - 368
  • [17] Self-Supervised Learning for Industrial Image Anomaly Detection by Simulating Anomalous Samples
    Pei, Mingjing
    Liu, Ningzhong
    Zhao, Bing
    Sun, Han
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2023, 16 (01)
  • [18] Self-Supervised Learning for Industrial Image Anomaly Detection by Simulating Anomalous Samples
    Mingjing Pei
    Ningzhong Liu
    Bing Zhao
    Han Sun
    International Journal of Computational Intelligence Systems, 16
  • [19] Adjacent Image Augmentation and Its Framework for Self-Supervised Learning in Anomaly Detection
    Kwon, Gi Seung
    Choi, Yong Suk
    SENSORS, 2024, 24 (17)
  • [20] Multilevel saliency-guided self-supervised learning for image anomaly detection
    Qin, Jianjian
    Gu, Chunzhi
    Yu, Jun
    Zhang, Chao
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (8-9) : 6339 - 6351