Physics-informed genetic programming for discovery of partial differential equations from scarce and noisy data

被引:1
|
作者
Cohen, Benjamin G. [1 ]
Beykal, Burcu [1 ,2 ]
Bollas, George M. [1 ]
机构
[1] Univ Connecticut, Dept Chem & Biomol Engn, Storrs, CT 06269 USA
[2] Univ Connecticut, Ctr Clean Energy Engn, Storrs, CT 06269 USA
基金
美国国家卫生研究院;
关键词
Model discovery; Symbolic regression; Partial differential equations; Genetic programming; SYMBOLIC REGRESSION; SYSTEMS;
D O I
10.1016/j.jcp.2024.113261
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A novel framework is proposed that utilizes symbolic regression via genetic programming to identify free-form partial differential equations from scarce and noisy data. The framework successfully identified ground truth models for four synthetic systems (an isothermal plug flow reactor, a continuously stirred tank reactor, a nonisothermal reactor, and viscous flow governed by Burgers' equation) from time-variant data collected at one location. A comparative analysis against the so-called weak Sparse Identification of Nonlinear Dynamics (SINDy) demonstrated the proposed framework's superior ability to identify meaningful partial differential equation (PDE) models when data was scarce. The framework was further tested for robustness to noise and scarcity, showing successful model recovery from as few as eight time series data points collected at a single point in space with 50% noise. These results emphasize the potential of the proposed framework for the discovery of PDE models when data collection is expensive or otherwise difficult.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Discovering physics-informed neural networks model for solving partial differential equations through evolutionary computation
    Zhang, Bo
    Yang, Chao
    SWARM AND EVOLUTIONARY COMPUTATION, 2024, 88
  • [42] A certified wavelet-based physics-informed neural network for the solution of parameterized partial differential equations
    Ernst, Lewin
    Urban, Karsten
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 45 (01) : 494 - 515
  • [43] Multi-Net strategy: Accelerating physics-informed neural networks for solving partial differential equations
    Wang, Yunzhuo
    Li, Jianfeng
    Zhou, Liangying
    Sun, Jingwei
    Sun, Guangzhong
    Software - Practice and Experience, 2022, 52 (12) : 2513 - 2536
  • [44] Feature-adjacent multi-fidelity physics-informed machine learning for partial differential equations
    Chen, Wenqian
    Stinis, Panos
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 498
  • [45] Discovering governing partial differential equations from noisy data
    Joemon, Nohan
    Pradeep, Melpakkam
    Rajulapati, Lokesh K.
    Rengaswamy, Raghunathan
    COMPUTERS & CHEMICAL ENGINEERING, 2024, 180
  • [46] A hybrid physics-informed neural network for nonlinear partial differential equation
    Lv, Chunyue
    Wang, Lei
    Xie, Chenming
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2022,
  • [47] Physics-informed variational inference for uncertainty quantification of stochastic differential equations
    Shin, Hyomin
    Choi, Minseok
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 487
  • [48] Physics-informed machine learning modeling for predictive control using noisy data
    Alhajeri, Mohammed S.
    Abdullah, Fahim
    Wu, Zhe
    Christofides, Panagiotis D.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2022, 186 : 34 - 49
  • [49] Assessing physics-informed neural network performance with sparse noisy velocity data
    Satyadharma, Adhika
    Chern, Ming-Jyh
    Kan, Heng-Chuan
    Harinaldi
    Julian, James
    PHYSICS OF FLUIDS, 2024, 36 (10)
  • [50] Multi-Step Physics-Informed Deep Operator Neural Network for Directly Solving Partial Differential Equations
    Wang, Jing
    Li, Yubo
    Wu, Anping
    Chen, Zheng
    Huang, Jun
    Wang, Qingfeng
    Liu, Feng
    APPLIED SCIENCES-BASEL, 2024, 14 (13):