First operation and validation of simulations for the divertor cryo-vacuum pump in Wendelstein 7-X

被引:0
|
作者
Haak, V. [1 ]
Dhard, C. P. [1 ]
Boeyaert, D. [2 ]
Braeuer, T. [1 ]
Bykov, V. [1 ]
Day, C. [3 ]
Degenkolbe, S. [1 ]
Ehrke, G. [1 ]
Igitkhanov, J. [3 ]
Khokhlov, M. [1 ]
Kremeyer, T. [1 ]
Nagel, M. [1 ]
Naujoks, D. [1 ]
Pietsch, M. [1 ]
Pilopp, D. [1 ]
Schlisio, G. [1 ]
Strobel, H. [3 ]
Tantos, C. [3 ]
Varoutis, S. [3 ]
Viebke, H. [1 ]
Volzke, O. [1 ]
机构
[1] Max Planck Inst Plasma Phys, D-17491 Greifswald, Germany
[2] Univ Wisconsin Madison, Madison, WI USA
[3] Karlsruhe Inst Technol, D-76344 Eggenstein Leopoldshafen, Germany
关键词
Cryo-vacuum pumping; Particle exhaust; Divertor neutral gas pressure; Stellarator Wendelstein 7-X; DESIGN;
D O I
10.1016/j.fusengdes.2024.114671
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Ten cryo-vacuum pumps (CVPs) were installed in the subdivertor region of each island divertor in the stellarator Wendelstein 7-X (W7-X) and operated for the first time during the recently completed plasma campaign OP2.1. A pumping speed of 70 +/- 1 m(3)/s was measured during dedicated tests with known hydrogen gas injection. Based on a conductance model, the estimated pumping speed ranges from 86-93 m(3)/s for different sticking coefficients between 0.6 and 0.8. After completion of the initial tests the CVPs were operated successfully throughout the campaign, with regeneration performed once a week. Neutral gas pressures in the subdivertor in the range of 10(-4) mbar are well within the molecular flow regime and limit the particle exhaust capabilities of the CVPs. Simulations of the neutral gas pressure in the three-dimensional complex geometry of the subdivertor were performed using the DIVGAS code based on the direct simulation Monte Carlo method and a model implemented in the steady-state thermal package in ANSYS, which are in agreement with the measured values during plasma operation.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] The Set of Diagnostics for the First Operation Campaign of the Wendelstein 7-X Stellarator
    Koenig, Ralf
    Baldzuhn, J.
    Biel, W.
    Biedermann, C.
    Bosch, H. S.
    Bozhenkov, S.
    Braeuer, T.
    Brotas de Carvalho, B.
    Burhenn, R.
    Buttenschoen, B.
    Cseh, G.
    Czarnecka, A.
    Endler, M.
    Erckmann, V.
    Estrada, T.
    Geiger, J.
    Grulke, O.
    Hartmann, D.
    Hathiramani, D.
    Hirsch, M.
    Onski, S. Jabl
    Jakubowski, M.
    Kaczmarczyk, J.
    Klinger, T.
    Klose, S.
    Kocsis, G.
    Kornejew, P.
    Kraemer-Flecken, A.
    Kremeyer, T.
    Krychowiak, M.
    Kubkowska, M.
    Langenberg, A.
    Laqua, H. P.
    Laux, M.
    Liang, Y.
    Lorenz, A.
    Marchuk, A. O.
    Moncada, V.
    Neubauer, O.
    Neuner, U.
    Oosterbeek, J. W.
    Otte, M.
    Pablant, N.
    Pasch, E.
    Pedersen, T. S.
    Rahbarnia, K.
    Ryc, L.
    Schmitz, O.
    Schneider, W.
    Schuhmacher, H.
    JOURNAL OF INSTRUMENTATION, 2015, 10
  • [22] Organizing Wendelstein 7-X device operation
    van Eeten, P.
    Bosch, H. S.
    Brakel, R.
    Degenkolbe, S.
    FUSION ENGINEERING AND DESIGN, 2020, 160
  • [23] Setup and first operation of the Wendelstein 7-X ICRH matching system
    Stepanov, I.
    Kallmeyer, J. P.
    Hartmann, D. A.
    Vervier, M.
    Castano-Bardawil, D.
    Dumortier, P.
    Durodie, F.
    Faugel, H.
    Hollfeld, K. P.
    Verstraeten, M.
    Offermanns, G.
    Ongena, J.
    Satheeswaran, G.
    Schweer, B.
    Van Schoor, M.
    Crombe, K.
    Kazakov, Ye. O.
    Acheroy, S.
    Vergote, M.
    Wolf, R.
    FUSION ENGINEERING AND DESIGN, 2025, 211
  • [24] Overview of first Wendelstein 7-X high-performance operation
    Klinger, T.
    Andreeva, T.
    Bozhenkov, S.
    Brandt, C.
    Burhenn, R.
    Buttenschoen, B.
    Fuchert, G.
    Geiger, B.
    Grulke, O.
    Laqua, H. P.
    Pablant, N.
    Rahbarnia, K.
    Stange, T.
    von Stechow, A.
    Tamura, N.
    Thomsen, H.
    Turkin, Y.
    Wegner, T.
    Abramovic, I
    Aekaeslompolo, S.
    Alcuson, J.
    Aleynikov, P.
    Aleynikova, K.
    Ali, A.
    Alonso, A.
    Anda, G.
    Ascasibar, E.
    Baehner, J. P.
    Baek, S. G.
    Balden, M.
    Baldzuhn, J.
    Banduch, M.
    Barbui, T.
    Behr, W.
    Beidler, C.
    Benndorf, A.
    Biedermann, C.
    Biel, W.
    Blackwell, B.
    Blanco, E.
    Blatzheim, M.
    Ballinger, S.
    Bluhm, T.
    Boeckenhoff, D.
    Boeswirth, B.
    Boettger, L-G
    Borchardt, M.
    Borsuk, V
    Boscary, J.
    Bosch, H-S
    NUCLEAR FUSION, 2019, 59 (11)
  • [25] The Langmuir probe system in the Wendelstein 7-X test divertor
    Rudischhauser, L.
    Endler, M.
    Hoefel, U.
    Hammond, K. C.
    Kallmeyer, J. P.
    Blackwell, B. D.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2020, 91 (06):
  • [26] Thermo-mechanical analysis of the Wendelstein 7-X divertor
    Ye, M. Y.
    Bykov, V.
    Peacock, A.
    Schauer, F.
    FUSION ENGINEERING AND DESIGN, 2011, 86 (9-11) : 1630 - 1633
  • [27] Design improvement of the target elements of Wendelstein 7-X divertor
    Boscary, J.
    Peacock, A.
    Friedrich, T.
    Greuner, H.
    Boeswirth, B.
    Tittes, H.
    Schulmeyer, W.
    Hurd, F.
    FUSION ENGINEERING AND DESIGN, 2012, 87 (7-8) : 1453 - 1456
  • [28] Summary of the production of the divertor target elements of Wendelstein 7-X
    Boscary, J.
    Friedrich, T.
    Greuner, H.
    Schulmeyer, W.
    Stadler, R.
    Mendelevitch, B.
    Junghanns, P.
    Ehrke, G.
    FUSION ENGINEERING AND DESIGN, 2017, 124 : 348 - 351
  • [29] A divertor scraper observation system for the Wendelstein 7-X stellarator
    Wurden, G. A.
    Fellinger, J.
    Biedermann, C.
    Drewelow, P.
    Ford, O.
    Gamradt, M.
    Greve, H.
    Herold, F.
    Jakubowski, M.
    Jenzsch, H.
    Niemann, H.
    Sitjes, A. Puig
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2018, 89 (10):
  • [30] Hydrogen content in divertor baffle tiles in Wendelstein 7-X
    Oelmann, Jannis
    Wust, Erik
    Brezinsek, Sebastijan
    Li, Cong
    Zhao, Dongye
    Rasinski, Marcin
    Dhard, Chandra Prakash
    Mayer, Matej
    Naujoks, Dirk
    Gao, Yu
    NUCLEAR MATERIALS AND ENERGY, 2021, 26