A physics-informed neural network for simulation of finite deformation in hyperelastic-magnetic coupling problems

被引:0
|
作者
Wang, Lei [1 ]
Luo, Zikun [1 ]
Lu, Mengkai [2 ]
Tang, Minghai [1 ]
机构
[1] Hohai Univ, Coll Mech & Engn Sci, Dept Engn Mech, Nanjing 211100, Peoples R China
[2] Ningbo Univ, Sch Mech Engn & Mech, Ningbo 315211, Zhejiang Provin, Peoples R China
基金
中国国家自然科学基金;
关键词
physics-informed neural network (PINN); deep learning; hyperelasticmagnetic coupling; finite deformation; small data set; O343.5; DEEP LEARNING FRAMEWORK; BEHAVIOR; MODEL;
D O I
10.1007/s10483-024-3174-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, numerous studies have demonstrated that the physics-informed neural network (PINN) can effectively and accurately resolve hyperelastic finite deformation problems. In this paper, a PINN framework for tackling hyperelastic-magnetic coupling problems is proposed. Since the solution space consists of two-phase domains, two separate networks are constructed to independently predict the solution for each phase region. In addition, a conscious point allocation strategy is incorporated to enhance the prediction precision of the PINN in regions characterized by sharp gradients. With the developed framework, the magnetic fields and deformation fields of magnetorheological elastomers (MREs) are solved under the control of hyperelastic-magnetic coupling equations. Illustrative examples are provided and contrasted with the reference results to validate the predictive accuracy of the proposed framework. Moreover, the advantages of the proposed framework in solving hyperelastic-magnetic coupling problems are validated, particularly in handling small data sets, as well as its ability in swiftly and precisely forecasting magnetostrictive motion.
引用
收藏
页码:1717 / 1732
页数:16
相关论文
共 50 条
  • [21] Physics-informed Neural Network for Force-free Magnetic Field Extrapolation
    Zhang, Yao
    Xu, Long
    Yan, Yihua
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2024, 24 (10)
  • [22] Is L2 Physics-Informed Loss Always Suitable for Training Physics-Informed Neural Network?
    Wang, Chuwei
    Li, Shanda
    He, Di
    Wang, Liwei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [23] A PHYSICS-INFORMED NEURAL OPERATOR FOR THE SIMULATION OF SURFACE WAVES
    Mathias, Marlon S.
    Netto, Caio F. D.
    Moreno, Felipe M.
    Coelho, Jefferson F.
    de Freitas, Lucas P.
    de Barros, Marcel R.
    de Mello, Pedro C.
    Dottori, Marcelo
    Cozman, Fabio G.
    Costa, Anna H. R.
    Nogueira Junior, Alberto C.
    Gomi, Edson S.
    Tannuri, Eduardo A.
    PROCEEDINGS OF ASME 2023 42ND INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2023, VOL 7, 2023,
  • [24] A Physics-Informed Neural Operator for the Simulation of Surface Waves
    Mathias, Marlon S.
    Netto, Caio F. D.
    Moreno, Felipe M.
    Coelho, Jefferson F.
    de Freitas, Lucas P.
    de Barros, Marcel R.
    de Mello, Pedro C.
    Dottori, Marcelo
    Cozman, Fabio G.
    Costa, Anna H. R.
    Nogueira Junior, Alberto C.
    Gomi, Edson S.
    Tannuri, Eduardo A.
    JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME, 2024, 146 (06):
  • [25] Physics-informed Neural Network for system identification of rotors
    Liu, Xue
    Cheng, Wei
    Xing, Ji
    Chen, Xuefeng
    Zhao, Zhibin
    Zhang, Rongyong
    Huang, Qian
    Lu, Jinqi
    Zhou, Hongpeng
    Zheng, Wei Xing
    Pan, Wei
    IFAC PAPERSONLINE, 2024, 58 (15): : 307 - 312
  • [26] A Physics-Informed Recurrent Neural Network for RRAM Modeling
    Sha, Yanliang
    Lan, Jun
    Li, Yida
    Chen, Quan
    ELECTRONICS, 2023, 12 (13)
  • [27] A physics-informed neural network for Kresling origami structures
    Liu, Chen-Xu
    Wang, Xinghao
    Liu, Weiming
    Yang, Yi-Fan
    Yu, Gui-Lan
    Liu, Zhanli
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 269
  • [28] Realizing the Potential of Physics-Informed Neural Network in Modelling
    Kheirandish, Zahra
    Schulz, Wolfgang
    JOURNAL OF LASER MICRO NANOENGINEERING, 2024, 19 (03): : 209 - 213
  • [29] Physics-informed Neural Network for Quadrotor Dynamical Modeling
    Gu, Weibin
    Primatesta, Stefano
    Rizzo, Alessandro
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2024, 171
  • [30] Parareal with a Physics-Informed Neural Network as Coarse Propagator
    Ibrahim, Abdul Qadir
    Goetschel, Sebastian
    Ruprecht, Daniel
    EURO-PAR 2023: PARALLEL PROCESSING, 2023, 14100 : 649 - 663