Self-organizing maps with adaptive distances for multiple dissimilarity matrices

被引:0
|
作者
Marino, Laura Maria Palomino [1 ]
de Carvalho, Francisco de Assis Tenorio [1 ]
机构
[1] Univ Fed Pernambuco, Ctr Informat, Ave Jornalista Anibal Fernandes s-n,Cidade Univ, BR-50740560 Recife, PE, Brazil
关键词
Self-organizing maps; Batch SOM; Multi-view dissimilarity data; Relevance weights; Adaptive distances; RELATIONAL DATA; SOM;
D O I
10.1007/s10994-024-06607-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
There has been an increasing interest in multi-view approaches based on their ability to manage data from several sources. However, regarding unsupervised learning, most multi-view approaches are clustering algorithms suitable for analyzing vector data. Currently, only a relatively few SOM algorithms can manage multi-view dissimilarity data, despite their usefulness. This paper proposes two new families of batch SOM algorithms for multi-view dissimilarity data: multi-medoids SOM and relational SOM, both designed to give a crisp partition and learn the relevance weight for each dissimilarity matrix by optimizing an objective function, aiming to preserve the topological properties of the map data. In both families, the weight represents the relevance of each dissimilarity matrix for the learning task being computed, either locally, for each cluster, or globally, for the whole partition. The proposed algorithms were compared with already in the literature single-view SOM and set-medoids SOM for multi-view dissimilarity data. According to the experiments using 14 datasets for F-measure, NMI, Topographic Error, and Silhouette, the relevance weights of the dissimilarity matrices must be considered. In addition, the multi-medoids and relational SOM performed better than the set-medoids SOM. An application study was also carried out on a dermatology dataset, where the proposed methods have the best performance.
引用
收藏
页码:7783 / 7806
页数:24
相关论文
共 50 条
  • [21] Decentralizing Self-organizing Maps
    Khan, Md Mohiuddin
    Kasmarik, Kathryn
    Garratt, Matt
    AI 2021: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, 13151 : 480 - 493
  • [22] THE SELF-ORGANIZING FEATURE MAPS
    KOHONEN, T
    MAKISARA, K
    PHYSICA SCRIPTA, 1989, 39 (01): : 168 - 172
  • [23] SELF-ORGANIZING SEMANTIC MAPS
    RITTER, H
    KOHONEN, T
    BIOLOGICAL CYBERNETICS, 1989, 61 (04) : 241 - 254
  • [24] An approach to collaboration of growing self-organizing maps and adaptive resonance theory maps
    Takanashi, Masaru
    Torikai, Hiroyuki
    Saito, Toshimichi
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2007, E90A (09) : 2047 - 2050
  • [25] Recursive self-organizing maps
    Voegtlin, T
    NEURAL NETWORKS, 2002, 15 (8-9) : 979 - 991
  • [26] Recursive self-organizing maps
    Voegtlin, T
    Dominey, PF
    ADVANCES IN SELF-ORGANISING MAPS, 2001, : 210 - 215
  • [27] Robust self-organizing maps
    Allende, H
    Moreno, S
    Rogel, C
    Salas, R
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS AND APPLICATIONS, 2004, 3287 : 179 - 186
  • [28] Self-organizing maps and SVD
    Dvorsky, Jiri
    DEXA 2007: 18TH INTERNATIONAL CONFERENCE ON DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, 2007, : 143 - 147
  • [29] Extensions of self-organizing maps
    Trutschl, M
    Cvek, U
    ISIS International Symposium on Interdisciplinary Science, 2005, 755 : 204 - 214
  • [30] Self-organizing visual maps
    Sim, R
    Dudek, G
    PROCEEDING OF THE NINETEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND THE SIXTEENTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2004, : 470 - 475