Tectonic-climate-wildfire coupling during the Miocene in the northeastern Qinghai-Tibetan Plateau

被引:0
|
作者
Liu, Li-Ming [1 ]
Cao, Zhen-Dong [1 ]
Li, Xiao-Mei [1 ]
Zhang, Si-Hang [1 ]
Zhang, Yun-Zhe [1 ]
Chen, Jia-Yi [1 ]
Yan, De-Fei [1 ]
Xie, San-Ping [1 ]
机构
[1] Lanzhou Univ, Key Lab Mineral Resources Western China Gansu Prov, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Miocene; Qinghai-Tibetan Plateau; Microcharcoal; Wildfire; MICROSCOPIC CHARCOAL; MIDDLE MIOCENE; QAIDAM BASIN; FIRE REGIMES; EAST-ASIA; UPLIFT; EVOLUTION; HISTORY; VEGETATION; ARIDIFICATION;
D O I
10.1016/j.jseaes.2024.106303
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The uplift of the Qinghai-Tibetan Plateau (QTP) is one of the most significant geological events in the Cenozoic era. While most studies have focused on the latitudinal differences in the uplift process of the QTP, there has been scant attention to its longitudinal differentiation. The Miocene epoch is pivotal for understanding both the uplift of the QTP and associated climatic changes. Wildfire events not only record changes in vegetation composition but also reflect climatic fluctuations and their driving forces. However, investigations into the interactions among these factors remain limited. This study aims to explore the coupling between the uplift of the QTP, climatic changes and wildfire frequency (or intensity) from northeastern QTP by analyzing microcharcoal concentrations and length-to-width ratios from the Miocene Youshashan Formation in Wulan County, Qinghai Province. The results indicate that the development of wildfires could be divided into three stages. Compared with the intervals 18-15 Ma and 11-8.7 Ma, the middle stage (15-11 Ma) experienced the highest wildfire frequency. This finding underscores the synchronous and close relationship between wildfire occurrences, the uplift of the QTP, and consequent climatic fluctuations. The ratio of length-to-width of microcharcoal indicates that Miocene wildfires in the Wulan Basin primarily occurred at the transitional zones between forests and grasslands. Moreover, the highest peak of wildfire events at six sites gradually shifted from the northeastern to the northwestern QTP from 18-8.7 Ma. This fact demonstrates spatiotemporal disparities in wildfire events from northern QTP, likely stemming from asynchronous uplifts there.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] The complexity of climate reconstructions using the coexistence approach on Qinghai-Tibetan Plateau
    Zhi-Yong Zhang
    Dong-Mei Cheng
    Cheng-Sen Li
    Wan Hu
    Xuan-Huai Zhan
    Hong-Li Ji
    JournalofPalaeogeography, 2019, 8 (01) : 68 - 77
  • [32] The effect of climate warming and permafrost thaw on desertification in the Qinghai-Tibetan Plateau
    Xue, Xian
    Guo, Jian
    Han, Bangshuai
    Sun, Qingwei
    Liu, Lichao
    GEOMORPHOLOGY, 2009, 108 (3-4) : 182 - 190
  • [33] The complexity of climate reconstructions using the coexistence approach on Qinghai-Tibetan Plateau
    Zhang, Zhi-Yong
    Cheng, Dong-Mei
    Li, Cheng-Sen
    Hu, Wan
    Zhan, Xuan-Huai
    Ji, Hong-Li
    JOURNAL OF PALAEOGEOGRAPHY-ENGLISH, 2019, 8
  • [34] Impact of climate change on allowable bearing capacity on the Qinghai-Tibetan Plateau
    Xu Xiao-Ming
    Wu Qing-Bai
    ADVANCES IN CLIMATE CHANGE RESEARCH, 2019, 10 (02) : 99 - 108
  • [35] Amphibians rise to flourishing under climate change on the Qinghai-Tibetan Plateau
    He, Fangfang
    Liang, Lu
    Wang, Huichun
    Li, Aijing
    La, Mencuo
    Wang, Yao
    Zhang, Xiaoting
    Zou, Denglang
    HELIYON, 2024, 10 (16)
  • [36] The Paleogene to Neogene climate evolution and driving factors on the Qinghai-Tibetan Plateau
    Jiagang Zhao
    Shufeng Li
    Alexander Farnsworth
    Paul J. Valdes
    Tammo Reichgelt
    Linlin Chen
    Zhekun Zhou
    Tao Su
    Science China Earth Sciences, 2022, 65 : 1339 - 1352
  • [37] Oligocene-Miocene (28-13 Ma) climato-tectonic evolution of the northeastern Qinghai-Tibetan Plateau evidenced by mineralogical and geochemical records of the Xunhua Basin
    Liu, Zhao
    Hong, Hanlie
    Wang, Chaowen
    Han, Wen
    Yin, Ke
    Ji, Kaipeng
    Fang, Qian
    Algeo, Thomas
    PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY, 2019, 514 : 98 - 108
  • [38] Observations of high level of ozone at Qinghai Lake basin in the northeastern Qinghai-Tibetan Plateau, western China
    Cao, J.J. (cao@loess.llqg.ac.cn), 1600, Kluwer Academic Publishers (72):
  • [39] Observations of high level of ozone at Qinghai Lake basin in the northeastern Qinghai-Tibetan Plateau, western China
    Q. Y. Wang
    R. S. Gao
    J. J. Cao
    J. P. Schwarz
    D. W. Fahey
    Z. X. Shen
    T. F. Hu
    P. Wang
    X. B. Xu
    R. -J. Huang
    Journal of Atmospheric Chemistry, 2015, 72 : 19 - 26
  • [40] Observations of high level of ozone at Qinghai Lake basin in the northeastern Qinghai-Tibetan Plateau, western China
    Wang, Q. Y.
    Gao, R. S.
    Cao, J. J.
    Schwarz, J. P.
    Fahey, D. W.
    Shen, Z. X.
    Hu, T. F.
    Wang, P.
    Xu, X. B.
    Huang, R. -J.
    JOURNAL OF ATMOSPHERIC CHEMISTRY, 2015, 72 (01) : 19 - 26